[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

High-performance anion-exchange chromatography–mass spectrometry method for determination of levoglucosan, mannosan, and galactosan in atmospheric fine particulate matter

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Biomass burning has a strong influence on the atmospheric aerosol composition through particulate organic, inorganic, and soot emissions. When biomass burns, cellulose and hemicelluloses degrade, producing monosaccharide anhydrides (MAs) such as levoglucosan, mannosan, and galactosan. Therefore, these compounds have been commonly used as tracers for biomass burning. In this study, a fast water-based method was developed for the routine analysis of MAs, based on high-performance anion-exchange chromatography with electrospray ionization mass spectrometry detection. This method combines simple sample preparation, fast separation, and the advantages of the selective detection with MS. Analysis run was optimized to the maximum separation of levoglucosan, mannosan, and galactosan with 15-min analysis. The validation results indicated that the method showed good applicability for determination of MA isomer concentrations in ambient samples. The limit of detection was 100 pg for levoglucosan and 50 pg for mannosan and galactosan. Wide determination ranges enabled the analysis of samples of different concentration levels. The method showed good precision, both for standard solutions (3.9–5.9% RSD) and for fine particle samples (4.3–8.5% RSD). Co-elution of internal standard (carbon-13-labeled levoglucosan) and sugar alcohols with levoglucosan decreased the sensitivity of levoglucosan determination. The method was used to determine the MA concentrations in ambient fine particle samples from urban background (Helsinki) and rural background (Hyytiälä) in Finland. The average levoglucosan, mannosan, and galactosan concentrations were 77, 8.8, and 4.2 ng m−3 in Helsinki (winter 2008–2009) and 17, 2.3, and 1.4 ng m−3 in Hyytiälä (spring 2007), respectively. The interrelation of the three MA isomers was fairly constant in the ambient fine particle samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Demirbas A (2005) Prog Energy Combust Sci 31:171–192

    Article  CAS  Google Scholar 

  2. Vermote E, Ellicott E, Dubovik O, Lapyonok T, Chin M, Giglio L, Roberts GJ (2009) J Geophys Res 114:D18205

    Article  Google Scholar 

  3. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, 996 pp

    Google Scholar 

  4. Yttri KE, Dye C, Braathen OA, Simpson D, Steinnes E (2009) Atmos Chem Phys 9:2007–2020

    Article  CAS  Google Scholar 

  5. Saarikoski S, Timonen H, Saarnio K, Aurela M, Järvi L, Keronen P, Kerminen VM, Hillamo R (2008) Atmos Chem Phys 8:6281–6295

    Article  CAS  Google Scholar 

  6. Szidat S, Jenk TM, Synal HA, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U (2006) J Geophys Res 111:D07206

    Article  Google Scholar 

  7. Reid JS, Koppmann R, Eck TF, Eleuterio DP (2005) Atmos Chem Phys 5:799–825

    Article  CAS  Google Scholar 

  8. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  9. Lighty JS, Veranth JM, Sarofim AF (2000) J Air Waste Manage Assoc 50:1565–1618

    CAS  Google Scholar 

  10. Boman BC, Forsberg AB, Järvholm BG (2003) Scand J Work Environ Health 29:251–260

    CAS  Google Scholar 

  11. Pettersen RC (1984) Adv Chem Ser 207:57–126

    Article  CAS  Google Scholar 

  12. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Atmos Environ 33:173–182

    Article  CAS  Google Scholar 

  13. Nolte CG, Schauer JJ, Cass GR, Simoneit BRT (2001) Environ Sci Technol 35:1912–1919

    Article  CAS  Google Scholar 

  14. Kawamoto H, Murayama M, Saka S (2003) J Wood Sci 49:469–473

    Article  CAS  Google Scholar 

  15. Shafidazed F (1984) Adv Chem Ser 207:489–529

    Article  Google Scholar 

  16. Simoneit BRT (2002) Appl Geochem 17:129–162

    Article  CAS  Google Scholar 

  17. Oja V, Suuberg EM (1999) J Chem Eng Data 44:26–29

    Article  CAS  Google Scholar 

  18. Fraser MP, Lakshmanan K (2000) Environ Sci Technol 34:4560–4564

    Article  CAS  Google Scholar 

  19. Khalil MAK, Rasmussen RA (2003) Atmos Environ 37:1211–1222

    Article  CAS  Google Scholar 

  20. Jordan TB, Seen AJ, Jacobsen GE (2006) Atmos Environ 40:5316–5321

    Article  CAS  Google Scholar 

  21. Hedberg E, Johansson C, Johansson L, Swietlicki E, Brorström-Lundén E (2006) J Air Waste Manage 56:1669–1678

    CAS  Google Scholar 

  22. Schneider J, Weimer S, Drewnick F, Borrmann S, Helas G, Gwaze P, Schmid O, Andreae MO, Kirchner U (2006) Int J Mass Spec 258:37–49

    Article  CAS  Google Scholar 

  23. Lanz VA, Alfarra MR, Baltensperger U, Buchmann B, Hueglin C, Prévôt ASH (2007) Atmos Chem Phys 7:1503–1522

    Article  CAS  Google Scholar 

  24. Schkolnik G, Rudich Y (2005) Anal Bioanal Chem 385:26–33

    Article  Google Scholar 

  25. Yue Z, Fraser MP (2004) Atmos Environ 38:3253–3261

    Article  CAS  Google Scholar 

  26. Dye C, Yttri KE (2005) Anal Chem 77:1853–1858

    Article  CAS  Google Scholar 

  27. Liu Y, Urgaonkar S, Verkade JG, Armstrong DW (2005) J Chromatogr A 1079:146–152

    Article  CAS  Google Scholar 

  28. Wan ECH, Yu JZ (2006) J Chromatogr A 1107:175–181

    Article  CAS  Google Scholar 

  29. Gambaro A, Zangrando R, Gabrielli P, Barbante C, Cescon P (2008) Anal Chem 80:1649–1655

    Article  CAS  Google Scholar 

  30. Ma Y, Hays MD, Geron CD, Walker JT, Gatari Gichuru MJ (2010) Atmos Chem Phys Discuss 10:153–182

    Article  Google Scholar 

  31. Engling G, Carrico CM, Kreidenweis SM, Collett JL Jr, Day DE, Malm WC, Lincoln E, Hao WM, Iinuma Y, Herrmann H (2006) Atmos Environ 40:S299–S311

    Article  CAS  Google Scholar 

  32. Caseiro A, Marr IL, Claeys M, Kasper-Giebl A, Puxbaum H, Pio CA (2007) J Chromatogr A 1171:37–45

    Article  CAS  Google Scholar 

  33. Puxbaum H, Caseiro A, Sánchez-Ochoa A, Kasper-Giebl A, Claeys M, Gelencsér A, Legrand M, Preunkert S, Pio C (2007) J Geophys Res 112:D23S05

    Article  Google Scholar 

  34. Iinuma Y, Engling G, Puxbaum H, Herrmann H (2009) Atmos Environ 43:1367–1371

    Article  CAS  Google Scholar 

  35. Engling G, Lee JJ, Tsai YW, Lung SCC, Chou CCK, Chan CY (2009) Aerosol Sci Technol 43:662–672

    Article  CAS  Google Scholar 

  36. García CD, Engling G, Herckes P, Collett JL Jr, Henry CS (2005) Environ Sci Technol 39:618–623

    Article  Google Scholar 

  37. Järvi L, Hannuniemi H, Hussein T, Junninen H, Aalto PP, Hillamo R, Mäkelä T, Keronen P, Siivola E, Vesala T, Kulmala M (2009) Boreal Env Res 14(suppl A):86–109

    Google Scholar 

  38. Kulmala M, Hämeri K, Aalto PP, Mäkelä J, Pirjola L, Nilsson ED, Buzorius G, Rannik Ü, Dal Maso M, Seidl W, Hoffmann T, Janson R, Hansson HC, Viisanen Y, Laaksonen A, O’Dowd C (2001) Tellus 53B:324–343

    CAS  Google Scholar 

  39. Berner A, Lürzer C (1980) J Phys Chem 84:2079–2083

    Article  CAS  Google Scholar 

  40. Iinuma Y, Brüggemann E, Gnauk T, Müller K, Andreae MO, Helas G, Parmar R, Herrmann H (2007) J Geophys Res 112:D08209

    Article  Google Scholar 

  41. Schkolnik G, Falcovich AH, Rudich Y, Maenhaut W, Artaxo P (2005) Environ Sci Technol 39:2744–2752

    Article  CAS  Google Scholar 

  42. Simoneit BRT, Elias VO, Kobayashi M, Kawamura K, Rushdi AI, Medeiros PM, Rogge WF, Didyk BM (2004) Environ Sci Technol 38:5939–5949

    Article  CAS  Google Scholar 

  43. Dahlman L, Persson J, Näsholm T, Palmquist K (2003) Planta 217:41–48

    CAS  Google Scholar 

  44. Loos H, Kramer R, Sahm H, Sprenger GA (1994) J Bacteriol 176:7688–7693

    CAS  Google Scholar 

  45. Medeiros PM, Conte MH, Weber JC, Simoneit BRT (2006) Atmos Environ 40:1694–1705

    Article  CAS  Google Scholar 

  46. Saarikoski SK, Sillanpää MK, Saarnio KM, Hillamo RE, Pennanen AS, Salonen RO (2008) Water Air Soil Pollut 191:265–277

    Article  CAS  Google Scholar 

  47. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Science 303:1173–1176

    Article  CAS  Google Scholar 

  48. Kourtchev I, Ruuskanen T, Maenhaut W, Kulmala M, Claeys M (2005) Atmos Chem Phys 5:2761–2770

    Article  CAS  Google Scholar 

  49. Yttri KE, Dye C, Slørdal LH, Braathen OA (2005) J Air Waste Manage Assoc 55:1169–1177

    CAS  Google Scholar 

  50. Carvalho A, Pio C, Santos C (2003) Atmos Environ 37:1775–1783

    Article  CAS  Google Scholar 

  51. Yttri KE, Dye C, Kiss G (2007) Atmos Chem Phys 7:4267–4279

    Article  CAS  Google Scholar 

  52. Saarikoski S, Sillanpää M, Sofiev M, Timonen H, Saarnio K, Teinilä K, Karppinen A, Kukkonen J, Hillamo R (2007) Atmos Environ 41:3577–3589

    Article  CAS  Google Scholar 

  53. Saarnio K, Aurela M, Timonen H, Saarikoski S, Teinilä K, Mäkelä T, Sofiev M, Koskinen J, Aalto PP, Kulmala M, Kukkonen J, Hillamo R (2010) Sci Total Environ 408:2527–2542

    Article  CAS  Google Scholar 

  54. IUPAC (1997) Compendium of chemical terminology, 2nd ed (the “Gold Book”). Compiled by McNaught AD and Wilkinson A, Blackwell Scientific, Oxford. http://goldbook.iupac.org (2006) created by Nic M, Jirat J, Kosata B; updates compiled by Jenkins A. ISBN 0-9678550-9-8. doi:10.1351/goldbook. Accessed 26 Nov 2009

  55. Peltola A (ed) (2008) Statistical yearbook of forestry. METLA (The Finnish Forest Research Institute), http://www.metla.fi/julkaisut/metsatilastollinenvsk/index-en.htm. Accessed 8 Dec 2009

Download references

Acknowledgements

This research was funded by the Academy of Finland (contracts 122870 and 124387) and by the Finnish Funding Agency for Technology and Innovation, TEKES (contracts 40298/07 and 40209/08). The research was also supported by the Academy of Finland Center of Excellence program (project number 1118615). The authors are grateful to the team of M. Kulmala (Department of Physics, University of Helsinki, Finland) for providing facilities to collect samples at SMEAR II station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karri Saarnio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saarnio, K., Teinilä, K., Aurela, M. et al. High-performance anion-exchange chromatography–mass spectrometry method for determination of levoglucosan, mannosan, and galactosan in atmospheric fine particulate matter. Anal Bioanal Chem 398, 2253–2264 (2010). https://doi.org/10.1007/s00216-010-4151-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4151-4

Keywords

Navigation