Abstract
The imaginary-time quantum dynamics is implemented in Cartesian coordinates using the momentum-dependent quantum potential approach. A nodeless wavefunction, represented in terms of quantum trajectories, is evolved in imaginary time according to the quantum-mechanical Boltzmann operator in the Eulerian frame-of-reference. The quantum potential and its gradient are determined approximately, from the global low-order (quadratic) polynomial fit to the trajectory momenta, which makes the approach practical in high dimensions. Implementation in the Cartesian coordinates allows one to work with the Hamiltonian of the simplest form, to setup calculations in the molecular dynamics-compatible framework and to naturally mix quantum and classical description of particles. Localization of wavefunctions in the center-of-mass degrees of freedom and in the overall rotation, which makes the quadratic polynomial fitting in Cartesian coordinates accurate, is accomplished by the addition of a quadratic constraining potential, and its contribution to the zero-point energy is analytically subtracted. For illustration, the zero-point energies are computed for model clusters consisting of up to 11 atoms (33 dimensions).
Similar content being viewed by others
References
Czako G, Bowman JM (2009) J Chem Phys 131
Zhang W, Kawamata H, Liu K (2009) Science 325:303
Dekker C, Ratner MA (2001) Phys World 14:29
Lear JD, Wasserman ZR, DeGrado WF (1988) Science 240:1177
Cha Y, Murray CJ, Klinman JP (1989) Science 243:1325
Knapp MJ, Klinman JP (2002) Eur J of Biochem 269:3113
Prezhdo OV, Rossky PJ (1997) J Chem Phys 107:5863
Brooksby C, Prezhdo O, Reid P (2003) J Chem Phys 119:9111
Prezhdo OV, Duncan WR, Prezhdo VV (2008) Acc Chem Res 41:339
Light JC, Carrington T Jr (2000) Adv Chem Phys 114:263
Meyer HD, Manthe U, Cederbaum LS (1990) Chem Phys Lett 165:73
Meyer HD, Worth GA (2003) Theor Chem Acc 109:251
Wang HB, Thoss M (2003) J Chem Phys 119:1289
Shalashilin DV, Child MS (2004) J Chem Phys 121:3563
Wu YH, Batista VS (2006) J Chem Phys 124:224305
Ben-Nun M, Quenneville J, Martinez TJ (2001) J Chem Phys 104:5161
Kim SY, Hammes-Schiffer S (2006) J Chem Phys 124:244102
Prezhdo O, Kisil V (1997) Phys Rev A 56:162
Hone TD, Izvekov S, Voth GA (2005) J Chem Phys 122:054105
Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467
Náray-Szabó, G, Warshel, A (eds) (1997) Computational approaches to biochemical reactivity, vol. 19 of Understanding chemical reactivity. Kluwer Academic Publishers, Dordrecht
Gindensperger E, Meier C, Beswick JA (2000) J Chem Phys 113:9369
Meier C, Manthe U (2001) J Chem Phys 115:5477
Karplus M, Sharma RD, Porter RN (1964) J Chem Phys 40:2033
Rassolov VA, Garashchuk S (2008) Chem Phys Lett 464:262
Schatz GC, Bowman JM, Kuppermann A (1975) J Chem Phys 63:685
Miller WH (2001) J Phys Chem A 105:2942
Wyatt RE (2005) Quantum dynamics with trajectories: introduction to quantum hydrodynamics. Springer, New York
Madelung E (1927) Z Phys 40:322
de Broglie L (1930) An introduction to the study ot wave mechanics. E. P. Dutton and Company Inc., New York
Bohm D (1952) Phys Rev 85:166
Garashchuk S (2010) J. Chem. Phys. 132:014112
Garashchuk S, Rassolov V, Prezhdo O (2011) Reviews in computational chemistry, vol 27, chap. Semiclassical Bohmian dynamics. Wiley, Hoboken, pp 111–210
Ramond P (1990) Field theory: a modern primer. Addison-Wesley, Reading
Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New York
Frantsuzov PA and Mandelshtam VA (2008) J Chem Phys 128
Chen X, Wu YH, Batista VS (2005) J Chem Phys 122
Cartarius H and Pollak E (2011) J Chem Phys 134
Miller WH (1971) J Chem Phys 55:3146
Blume D, Lewerenz M, Niyaz P, Whaley KB (1997) Phys Rev E 55:3664
Ceperley DM, Mitas L (1996) Advances in chemical physics, chap. Monte Carlo methods in quantum chemistry. Wiley, London
Lester WA Jr, Mitas L, Hammond B (2009) Chem Phys Lett 478:1
Viel A, Coutinho-Neto MD, Manthe U (2007) J Chem Phys 126:024308
Hinkle CE, McCoy AB (2008) J Phys Chem A 112:2058
Miller WH, Schwartz SD, Tromp JW (1983) J Chem Phys 79:4889
Rassolov VA, Garashchuk S, Schatz GC (2006) J Phys Chem. A 110:5530
Garashchuk S, Vazhappilly T (2010) J Phys Chem C 114:20595
Garashchuk S, Mazzuca J, Vazhappilly T (2011b) J Chem Phys 135:034104
Liu J, Makri N (2005) Mol Phys 103:1083
Goldfarb Y, Degani I, Tannor DJ (2007) Chem Phys 338:106
Garashchuk S (2010b) Chem Phys Lett 491:96
Trahan CJ, Wyatt RE (2003) J Chem Phys 118:4784
Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes: the art of scientific computing. 2nd edn. Cambridge University Press, Cambridge
Reed SK, González-Martínez ML, Rubayo-Soneira J, and Shalashilin DV (2011) J Chem Phys 134
Dubbeldam D, Oxford GAE, Krishna R, Broadbelt LJ, and Snurr RQ (2010) J Chem Phys 133
Ochterski JW (1999) Vibrational analysis in Gaussian, http://www.gaussian.com/g_-whitepap/vib.htm
Meyer H (2002) Annu Rev Phys Chem 53:141
M. A. Ratner, Gerber RB (1986) J Phys Chem 90:20
Carter S, Culik SJ, Bowman JM (1997) J Chem Phys 107:10458
Morse PM (1929) Phys Rev 34:57
Feit MD, Fleck JA Jr, Steiger A (1982) J Comp Phys 47:412
Acknowledgments
This material is based on work partially supported by the South Carolina Research foundation and by the National Science Foundation under Grant No. CHE-1056188. The author is grateful to V. A. Rassolov for many stimulating discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published as part of the special collection of articles celebrating the 50th anniversary of Theoretical Chemistry Accounts/Theoretica Chimica Acta.
Rights and permissions
About this article
Cite this article
Garashchuk, S. Calculation of the zero-point energy from imaginary-time quantum trajectory dynamics in Cartesian coordinates. Theor Chem Acc 131, 1083 (2012). https://doi.org/10.1007/s00214-011-1083-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-011-1083-9