[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Calculation of the zero-point energy from imaginary-time quantum trajectory dynamics in Cartesian coordinates

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The imaginary-time quantum dynamics is implemented in Cartesian coordinates using the momentum-dependent quantum potential approach. A nodeless wavefunction, represented in terms of quantum trajectories, is evolved in imaginary time according to the quantum-mechanical Boltzmann operator in the Eulerian frame-of-reference. The quantum potential and its gradient are determined approximately, from the global low-order (quadratic) polynomial fit to the trajectory momenta, which makes the approach practical in high dimensions. Implementation in the Cartesian coordinates allows one to work with the Hamiltonian of the simplest form, to setup calculations in the molecular dynamics-compatible framework and to naturally mix quantum and classical description of particles. Localization of wavefunctions in the center-of-mass degrees of freedom and in the overall rotation, which makes the quadratic polynomial fitting in Cartesian coordinates accurate, is accomplished by the addition of a quadratic constraining potential, and its contribution to the zero-point energy is analytically subtracted. For illustration, the zero-point energies are computed for model clusters consisting of up to 11 atoms (33 dimensions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Czako G, Bowman JM (2009) J Chem Phys 131

  2. Zhang W, Kawamata H, Liu K (2009) Science 325:303

    Article  CAS  Google Scholar 

  3. Dekker C, Ratner MA (2001) Phys World 14:29

    CAS  Google Scholar 

  4. Lear JD, Wasserman ZR, DeGrado WF (1988) Science 240:1177

    Article  CAS  Google Scholar 

  5. Cha Y, Murray CJ, Klinman JP (1989) Science 243:1325

    Article  CAS  Google Scholar 

  6. Knapp MJ, Klinman JP (2002) Eur J of Biochem 269:3113

    Article  CAS  Google Scholar 

  7. Prezhdo OV, Rossky PJ (1997) J Chem Phys 107:5863

    Article  CAS  Google Scholar 

  8. Brooksby C, Prezhdo O, Reid P (2003) J Chem Phys 119:9111

    Article  CAS  Google Scholar 

  9. Prezhdo OV, Duncan WR, Prezhdo VV (2008) Acc Chem Res 41:339

    Article  CAS  Google Scholar 

  10. Light JC, Carrington T Jr (2000) Adv Chem Phys 114:263

    Article  Google Scholar 

  11. Meyer HD, Manthe U, Cederbaum LS (1990) Chem Phys Lett 165:73

    Article  CAS  Google Scholar 

  12. Meyer HD, Worth GA (2003) Theor Chem Acc 109:251

    Article  CAS  Google Scholar 

  13. Wang HB, Thoss M (2003) J Chem Phys 119:1289

    Article  CAS  Google Scholar 

  14. Shalashilin DV, Child MS (2004) J Chem Phys 121:3563

    Article  CAS  Google Scholar 

  15. Wu YH, Batista VS (2006) J Chem Phys 124:224305

    Article  Google Scholar 

  16. Ben-Nun M, Quenneville J, Martinez TJ (2001) J Chem Phys 104:5161

    Google Scholar 

  17. Kim SY, Hammes-Schiffer S (2006) J Chem Phys 124:244102

    Article  Google Scholar 

  18. Prezhdo O, Kisil V (1997) Phys Rev A 56:162

    Article  CAS  Google Scholar 

  19. Hone TD, Izvekov S, Voth GA (2005) J Chem Phys 122:054105

    Article  Google Scholar 

  20. Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467

    Article  CAS  Google Scholar 

  21. Náray-Szabó, G, Warshel, A (eds) (1997) Computational approaches to biochemical reactivity, vol. 19 of Understanding chemical reactivity. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  22. Gindensperger E, Meier C, Beswick JA (2000) J Chem Phys 113:9369

    Article  CAS  Google Scholar 

  23. Meier C, Manthe U (2001) J Chem Phys 115:5477

    Article  CAS  Google Scholar 

  24. Karplus M, Sharma RD, Porter RN (1964) J Chem Phys 40:2033

    Article  CAS  Google Scholar 

  25. Rassolov VA, Garashchuk S (2008) Chem Phys Lett 464:262

    Article  CAS  Google Scholar 

  26. Schatz GC, Bowman JM, Kuppermann A (1975) J Chem Phys 63:685

    Article  CAS  Google Scholar 

  27. Miller WH (2001) J Phys Chem A 105:2942

    Article  CAS  Google Scholar 

  28. Wyatt RE (2005) Quantum dynamics with trajectories: introduction to quantum hydrodynamics. Springer, New York

    Google Scholar 

  29. Madelung E (1927) Z Phys 40:322

    Article  Google Scholar 

  30. de Broglie L (1930) An introduction to the study ot wave mechanics. E. P. Dutton and Company Inc., New York

    Google Scholar 

  31. Bohm D (1952) Phys Rev 85:166

    Article  CAS  Google Scholar 

  32. Garashchuk S (2010) J. Chem. Phys. 132:014112

    Article  Google Scholar 

  33. Garashchuk S, Rassolov V, Prezhdo O (2011) Reviews in computational chemistry, vol 27, chap. Semiclassical Bohmian dynamics. Wiley, Hoboken, pp 111–210

  34. Ramond P (1990) Field theory: a modern primer. Addison-Wesley, Reading

    Google Scholar 

  35. Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New York

    Google Scholar 

  36. Frantsuzov PA and Mandelshtam VA (2008) J Chem Phys 128

  37. Chen X, Wu YH, Batista VS (2005) J Chem Phys 122

  38. Cartarius H and Pollak E (2011) J Chem Phys 134

  39. Miller WH (1971) J Chem Phys 55:3146

    Article  CAS  Google Scholar 

  40. Blume D, Lewerenz M, Niyaz P, Whaley KB (1997) Phys Rev E 55:3664

    Article  CAS  Google Scholar 

  41. Ceperley DM, Mitas L (1996) Advances in chemical physics, chap. Monte Carlo methods in quantum chemistry. Wiley, London

    Google Scholar 

  42. Lester WA Jr, Mitas L, Hammond B (2009) Chem Phys Lett 478:1

    Article  CAS  Google Scholar 

  43. Viel A, Coutinho-Neto MD, Manthe U (2007) J Chem Phys 126:024308

    Article  Google Scholar 

  44. Hinkle CE, McCoy AB (2008) J Phys Chem A 112:2058

    Article  CAS  Google Scholar 

  45. Miller WH, Schwartz SD, Tromp JW (1983) J Chem Phys 79:4889

    Article  CAS  Google Scholar 

  46. Rassolov VA, Garashchuk S, Schatz GC (2006) J Phys Chem. A 110:5530

    Article  CAS  Google Scholar 

  47. Garashchuk S, Vazhappilly T (2010) J Phys Chem C 114:20595

    Article  CAS  Google Scholar 

  48. Garashchuk S, Mazzuca J, Vazhappilly T (2011b) J Chem Phys 135:034104

    Article  Google Scholar 

  49. Liu J, Makri N (2005) Mol Phys 103:1083

    Article  CAS  Google Scholar 

  50. Goldfarb Y, Degani I, Tannor DJ (2007) Chem Phys 338:106

    Article  CAS  Google Scholar 

  51. Garashchuk S (2010b) Chem Phys Lett 491:96

    Article  CAS  Google Scholar 

  52. Trahan CJ, Wyatt RE (2003) J Chem Phys 118:4784

    Article  CAS  Google Scholar 

  53. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes: the art of scientific computing. 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  54. Reed SK, González-Martínez ML, Rubayo-Soneira J, and Shalashilin DV (2011) J Chem Phys 134

  55. Dubbeldam D, Oxford GAE, Krishna R, Broadbelt LJ, and Snurr RQ (2010) J Chem Phys 133

  56. Ochterski JW (1999) Vibrational analysis in Gaussian, http://www.gaussian.com/g_-whitepap/vib.htm

  57. Meyer H (2002) Annu Rev Phys Chem 53:141

    Article  CAS  Google Scholar 

  58. M. A. Ratner, Gerber RB (1986) J Phys Chem 90:20

    Article  Google Scholar 

  59. Carter S, Culik SJ, Bowman JM (1997) J Chem Phys 107:10458

    Article  CAS  Google Scholar 

  60. Morse PM (1929) Phys Rev 34:57

    Article  CAS  Google Scholar 

  61. Feit MD, Fleck JA Jr, Steiger A (1982) J Comp Phys 47:412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based on work partially supported by the South Carolina Research foundation and by the National Science Foundation under Grant No. CHE-1056188. The author is grateful to V. A. Rassolov for many stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophya Garashchuk.

Additional information

Published as part of the special collection of articles celebrating the 50th anniversary of Theoretical Chemistry Accounts/Theoretica Chimica Acta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garashchuk, S. Calculation of the zero-point energy from imaginary-time quantum trajectory dynamics in Cartesian coordinates. Theor Chem Acc 131, 1083 (2012). https://doi.org/10.1007/s00214-011-1083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-011-1083-9

Keywords

Navigation