Abstract
Many sequences that arise in combinatorics and the analysis of algorithms turn out to be holonomic (note that some authors prefer the terminology D-finite). In this paper, we study various basic algorithmic problems for such sequences \((f_n)_{n \in {\mathbb {N}}}\): how to compute their asymptotics for large n? How to evaluate \(f_n\) efficiently for large n and/or large precisions p? How to decide whether \(f_n > 0\) for all n? We restrict our study to the case when the generating function \(f = \sum _{n \in {\mathbb {N}}} f_n z^n\) satisfies a Fuchsian differential equation (often it suffices that the dominant singularities of f be Fuchsian). Even in this special case, some of the above questions are related to long-standing problems in number theory. We will present algorithms that work in many cases and we carefully analyze what kind of oracles or conjectures are needed to tackle the more difficult cases.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
If f has no singularities in \({\mathbb {C}}\), then the assumption that f is Fuchsian at infinity implies that f is actually a polynomial. In what follows, we will discard this trivial case and assume that f has at least one singularity in \({\mathbb {C}}\).
The classical Mellin transform uses a straight integration path from \(z = 0\) to \(+ \infty \) instead of a Hankel contours around \(\alpha _k\). We will say that our Mellin integral is “based at \(\alpha _k\)”. The use of a Hankel contours extends the definition to the case when f is not integrable at \(\alpha _k\). In the context of difference equations, certain authors prefer the terminology “Laplace transform”, “Pincherle transform”, or “Nörlund transform” instead of “Mellin transform”.
References
van der Hoeven, J.: The Jolly Writer. Your Guide to GNU TeXmacs, Scypress (2020)
Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comp. Appl. Math. 32, 321–368 (1990)
Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge University Press, Cambridge (2009)
Kenison, G., Lipton, R., Ouaknine, J., Worrell, J.: On the Skolem problem and prime powers. In Proc. of the 45th Intern. Symp. on Symbolic and AlgebraicComputation, ISSAC ’20, pp. 289–296. ACM, (2020)
Nosan, K., Pouly, A., Shirmohammadi, M., Worrell, J.: The membership problem for hypergeometric sequences with rational parameters. In Proc. ISSAC ’22, pp. 381–389. (2022)
Melczer, S., Mezzarobba, M.: Sequence positivity through numeric analytic continuation: uniqueness of the Canham model for biomembranes. Combinatorial Theory (2022). https://doi.org/10.5070/C62257847
Chudnovsky, D. V., Chudnovsky, G. V.: Computer algebra in the service of mathematical physics and number theory (Computers in mathematics, Stanford, CA, 1986). In Lect. Notes in Pure and Applied Math., vol. 125, pp. 109–232. New-York, (1990)
van der Hoeven, J.: Fast evaluation of holonomic functions. TCS 210, 199–215 (1999)
van der Hoeven, J.: Fast evaluation of holonomic functions near and in singularities. JSC 31, 717–743 (2001)
Mezzarobba, M.: Autour de l’évaluation numérique des fonctions D-finies. PhD thesis, École polytechnique, Palaiseau, France
Mezzarobba, M.: Rigorous multiple-precision evaluation of D-Finite functions in SageMath. Technical Report, HAL, (2016). https://hal.archives-ouvertes.fr/hal-01342769
Dong, R.: Computing error bounds for asymptotic expansions of regular P-recursive sequences. Master’s thesis, École polytechnique,: Unpublished. Supervised by S. Melczer and M, Mezzarobba (2021)
Dong, R., Melczer, S., Mezzarobba, M.: Computing error bounds for asymptotic expansions of regular P-recursive sequences. Technical Report, ArXiv, 2022. arXiv:https://arxiv.org/abs/2212.11742
Gerhold, S., Kauers, M.: A procedure for proving special function inequalities involving a discrete parameter. In Proc. of the 2005 Intern.Symp. on Symbolicand AlgebraicComputation, ISSAC 2005, pp. 156–162. ACM, (2005)
Kauers, M., Pillwein, V.: When can we detect that a p-finite sequence is positive? In Proc. of the 2010 Intern. Symp. on Symbolic and Algebraic Computation, ISSAC 2010, pp. 195–201. ACM, (2010)
Pincherle, S.: Sur la génération de systèmes récurrents au moyen d’une équation linéaire différentielle. Acta Math. 16, 341–363 (1892)
van der Hoeven, J.: On the computation of limsups. J. Pure Appl. Algebra 117(118), 381–394 (1996)
Nörlund, N.E.: Fractions continues et différences réciproques. Acta Math. 34, 1–108 (1910)
Galbrun, H.: Sur la représentation des solutions d’une équation linéaire aux différences finies pour les grandes valeurs de la variable. Acta Math. 36, 1–68 (1913)
Nörlund, N.E.: Vorlesungen über Differenzenrechnung. Springer Verlag, Berlin (1924)
Galbrun, H.: Sur certaines solutions exceptionnelles d’une équation linéaire aux différences finies. Bull. S.M.F. 49, 206–241 (1921)
Duval, A.: Équations aux différences dans le champ complexe. PhD thesis, IRMA, Strasbourg, France, (1984)
Barkatou, M.A.: Contributions à l’étude d’équations différentielleset aux différencesdans le champ complexe. PhD thesis, Institut National Polytechnique de Grenoble, (1989)
Immink, G.K.: On the relation between global properties of linear difference and differential equations with polynomial coefficients. I. J. Diff. Eq. 113, 201–233 (1994)
Immink, G.K.: On the relation between global properties of linear difference and differential equations with polynomial coefficients. II. J. Diff. Eq. 128, 168–205 (1996)
Immink, G.K.: On the relation between global properties of linear difference and differential equations with polynomial coefficients. Math. Nachr. 200, 59–76 (1999)
Fuchs, L.: Zur Theorie der Linearen Differentialgleichungen mit veränderlichen Coefficienten. J. für die reine une angewandte Math. 66(2), 121–160 (1866)
van der Put, M., Singer, M.: Galois Theory of Linear Differential Equations, volume 328 of Grundlehren der mathematischen Wissenschaften. Springer, (2003)
van der Hoeven, J.: Efficient accelero-summation of holonomic functions. Technical Report, HAL, (2021). https://hal.archives-ouvertes.fr/hal-03154241, corrected version of [25]
Fischler, S., Rivoal, T.: On the values of G-functions. Comment. Math. Helv. 89(2), 313–341 (2014)
Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1996)
Th. Skolem. Einige Sätze über gewisse Reihenentwicklungen und exponentiale Beziehungen mit anwendung auf diophantische Gleichungen. Oslo Vid. akad. Skrifter, 1(6), (1933)
Mahler, K.: Eine arithmetische Eigenschaft der Taylor-koeffizienten rationaler Funktionen. Proc. Akad. Wetensch. Amsterdam 38, 50–60 (1935)
Lech, C.: A note on recurring series. Ark. Mat. 2, 417–421 (1953)
Berstel, J., Mignotte, M.: Deux propriétés décidables des suites récurrentes linéaires. Bull. de la S.M.F. 104, 175–184 (1976)
Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In Reachability Problems: 6th International Workshop, RP 2012, volume 7550 of Lect.Notesin Comp. Science, pages 21–28. Bordeaux, France, September (2012). Springer-Verlag
Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois J. Math. 6(1), 64–94 (1962)
Householder, A.S.: Dandelin, Lobacevskii, or Graeffe. Am. Math. Mon. 66(6), 464–466 (1959)
Baker, A.: Linear forms in the logarithms of algebraic numbers (III). Mathematika 14(2), 220–228 (1967)
van der Hoeven, J.: Zero-testing, witness conjectures and differential diophantine approximation. Technical Report 2001-62, Prépublications d’Orsay, (2001)
Harvey, D., van der Hoeven, J.: Integer multiplication in time \(O (n \log n)\). Ann. Math. 193(2), 563–617 (2021)
Brent, R.P.: Fast multiple-precision evaluation of elementary functions. J. ACM 23(2), 242–251 (1976)
Boshernitzan, M.D.: Uniform distribution and Hardy fields. J. Anal. Math. 62, 225–240 (1994)
Bourbaki, N.: Fonctions d’une variable réelle. Éléments de Mathématiques (Chap. 5). Hermann, 2-nd edition, (1961)
Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry, volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag, 2-nd edition to appear (2006)
Birkhoff, G.D.: Formal theory of irregular linear difference equations. Acta Math. 54, 205–246 (1930)
van der Hoeven, J.: Relax, but don’t be too lazy. JSC 34, 479–542 (2002)
van der Hoeven, J.: From implicit to recursive equations. AAECC 30(3), 243–262 (2018)
van der Hoeven, J.: Efficient accelero-summation of holonomic functions. JSC 42(4), 389–428 (2007)
Acknowledgements
We are grateful to Marc Mezzarobba, Ruiwen Dong, and an anonymous referee for comments, suggestions, references, and helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This document has been written using GNU TEXmacs [1].
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
van der Hoeven, J. Fuchsian holonomic sequences. AAECC (2023). https://doi.org/10.1007/s00200-023-00616-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00200-023-00616-4