[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Computing Tjurina stratifications of \(\mu \)-constant deformations via parametric local cohomology systems

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Algebraic local cohomology classes associated with parametric semi-quasihomogeneous hypersurface isolated singularities are considered in the context of symbolic computation. The motivations for this paper are computer calculations of complete lists of Tjurina numbers of semi-quasihomogeneous polynomials with isolated singularity. A new algorithm, that utilizes parametric local cohomology systems, is proposed to compute Tjurina stratifications associated with \(\mu \)-constant deformations of weighted homogeneous isolated singularities. The resulting algorithm gives in particular a suitable decomposition of the parameter space depending on the structure of the parametric local cohomology systems. An efficient algorithm of computing parametric standard bases of relevant ideals is also given as an application of parametric local cohomology systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arnold, V.: Normal forms of functions in neighbourhoods of degenerate critical points. Rus. Math. Surv. 29, 10–50 (1974)

    Article  Google Scholar 

  2. Gao, X., Chou, S.: Solving parametric algebraic systems. In: Wang, P. (ed.) International Symposium on Symbolic and Algebraic Computation (ISSAC 1992), pp. 335–341. ACM-Press (1992)

  3. Grassmann, H., Greuel, G.-M., Martin, B., Neumann, W., Pfister, G., Pohl, W., Schönemann, H., Siebert, T.: Standard bases, syzygies and their implementation in SINGULAR. Appl. Algebra Eng. Commun. Comput. 7, 235–249 (1996)

    Article  MATH  Google Scholar 

  4. Grauert, H.: Über die deformation isolierter singularitäten analytischer Mengen. Invent. Math. 15, 171–198 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki 149 (1957)

  6. Grothendieck, A.: Local cohomology, notes by R. Hartshorne. Lecture Notes in Mathematics, vol. 41. Springer (1967)

  7. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mather, J.N., Yau, S.S.T.: Criterion for biholomorphic equivalence of isolated hypersurface singularities. Proc. Natl. Acad. Sci. USA 78(10), 5946–5947 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mather, J.N., Yau, S.S.T.: Classification of isolated hypersurface singularities by their moduli algebras. Invent. Math. 69, 243–251 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martin, B., Pfister, G.: The kernel of the Kodaira–Spencer map of the versal \( \mu \)-constant deformation of an irreducible plane curve with \( {C}^{\ast } \)-action. J. Symb. Comput. 7, 527–531 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mora, T., Pfister, G., Traverso, T.: An introduction to the tangent cone algorithm. Adv. Comput. Res. Issued Robot. Nonlinear Geom. 6, 199–270 (1992)

    Google Scholar 

  12. Nabeshima, K., Tajima, S.: An algorithm for computing Tjurina stratifications of \(\mu \)-constant deformations by using local cohomology classes with parameters. In: Hoon, H., Yap, C. (ed.) Lecture Notes in Computer Science vol. 8592, pp. 523–530. Springer (2014)

  13. Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. In: Proceedings of International Symposium on Symbolic and Algebraic Computation (ISSAC 2014), pp. 351–358. ACM-Press (2014)

  14. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. arXiv:1508.06724 (2015)

  15. Nakamura, Y., Tajima, S.: On weighted-degrees for algebraic local cohomologies associated with semiquasihomogeneous singularities. Adv. Stud. Pure Math. 46, 105–117 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Noro, M., Takeshima, T.: Risa/Asir—a computer algebra system. In: Wang, P. (ed.) International Symposium on Symbolic and Algebraic Computation (ISSAC 1992), pp. 387–396. ACM-Press (1992)

  17. Saito, K.: Quasihomogeneous isolated Singularitäten von Hyperflächen. Invent. Math. 14, 123–142 (1971)

    Article  MathSciNet  Google Scholar 

  18. Sit, W.: An algorithm for solving parametric linear systems. J. Symb. Comput. 13, 353–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tajima, S.: Parametric local cohomology classes and Tjurina stratifications for \(\mu \)-constant deformations of quasi-homogeneous singularities. In: Proceedings of Topics on Real and Complex Singularities, pp. 189–200. World Scientific (2014)

  20. Tajima, S., Nakamura, Y.: Algebraic local cohomology classes attached to quasi-homogeneous isolated hypersurface singularities. Publ. Res. Inst. Math. Sci. Kyoto Univ. 41, 1–10 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symb. Comput. 44, 435–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Yau, S.S.T.: Criteria for right–left equivalence and right equivalence of holomorphic functions with isolated critical points. Proc. Symp. Pure Math. 41, 291–297 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by JSPS Grant-in-Aid for Young Scientists (B) (No.15K17513) and Grant-in-Aid for Scientific Research (C) (No.15K04891).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima.

Additional information

This paper is a full version of the extended abstract [12].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabeshima, K., Tajima, S. Computing Tjurina stratifications of \(\mu \)-constant deformations via parametric local cohomology systems. AAECC 27, 451–467 (2016). https://doi.org/10.1007/s00200-016-0289-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-016-0289-4

Keywords

Mathematics Subject Classification

Navigation