Abstract
In this paper we establish bounds for the main parameters of parameterized codes associated to the edges of a simple graph \(\mathcal {G}\) by using the relationships among these parameters and the corresponding ones of the parameterized codes associated to the edges of any subgraph of \(\mathcal {G}\). These inequalities are used to find bounds in the case of complete r-partite graphs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Duursma, I., Rentería, C., Tapia-Recillas, H.: Reed Muller codes on complete intersections. Appl. Algebra Eng. Commun. Comput. 11, 455–462 (2001)
Geramita, A.V., Kreuzer, M., Robbiano, L.: Cayley–Bacharach schemes and their canonical modules. Trans. Am. Math. Soc. 339(1), 163–189 (1993)
Sarabia, M.G., Rentería, C.: Evaluation codes associated to complete bipartite graphs. Int. J. Algebra 2, 163–170 (2008)
Sarabia, M.G., Nava Lara, J., Márquez, C.R., Rosales, E.S.: Parameterized codes over cycles. An. St. Univ. Ovidius Constanta 21(3), 241–255 (2013)
Sarabia, M.G., Márquez, C.R., Rosales, E.S.: Parameterized codes over some embedded sets and their applications to complete graphs. Math. Commun. 18, 337–391 (2013)
Sarabia, M.G., Márquez, C.R., Rosales, E.S.: Projective parameterized linear codes. An. St. Univ. Ovidius Constanta 23, 2 (2015)
Grayson D.R., Stillman M.: Macaulay2. Available via anonymous ftp from math.uiuc.edu (1996)
Harris, J.: Algebraic Geometry. A First Course. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)
Neves, J., Vaz Pinto, M., Villarreal, R.H.: Vanishing ideals over graphs and even cycles. Commun. Algebra 43(3), 1050–1075 (2015)
Neves, J., Vaz Pinto, M.: Vanishing ideals over complete multipartite graphs. J. Pure Appl. Algebra 218(6), 1084–1094 (2014)
Rentería, C., Simis, A., Villarreal, R.H.: Algebraic methods for parameterized codes and invariants of vanishing ideals over finite fields. Finite Fields Appl. 17, 81–104 (2011)
Sarmiento, E.R., Vaz Pinto, M., Villarreal, R.H.: The minimum distance of parameterized codes on projective tori. Appl. Algebra Eng. Commun. Comput. 22, 249–264 (2010)
Tohǎneanu, S.O., Van Tuyl, A.: Bounding invariants of fat points using a coding theory construction. J. Pure Appl. Algebra 217, 269–279 (2013)
Vaz Pinto, M., Villarreal, R.H.: The degree and regularity of vanishing ideals of algebraic toric sets over finite fields. Commun. Algebra 41(9), 3376–3396 (2013)
Villarreal, R.H.: Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 238. Marcel Dekker, New York (2001)
Wei, V.K.: Hamming weights for linear codes. IEEE Trans. Inf. Theory 37, 1412–1418 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author is partially supported by COFAA–IPN and SNI–SEP. The second author is partially supported by SNI–SEP.
Rights and permissions
About this article
Cite this article
Sarabia, M.G., Rosales, E.S. Parameterized codes associated to the edges of some subgraphs of a simple graph. AAECC 26, 493–505 (2015). https://doi.org/10.1007/s00200-015-0262-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-015-0262-7
Keywords
- Toric set
- Parameterized code
- Hilbert function
- Minimum distance
- Generalized Hamming weights
- Regularity index