[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Parameterized codes associated to the edges of some subgraphs of a simple graph

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper we establish bounds for the main parameters of parameterized codes associated to the edges of a simple graph \(\mathcal {G}\) by using the relationships among these parameters and the corresponding ones of the parameterized codes associated to the edges of any subgraph of \(\mathcal {G}\). These inequalities are used to find bounds in the case of complete r-partite graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Duursma, I., Rentería, C., Tapia-Recillas, H.: Reed Muller codes on complete intersections. Appl. Algebra Eng. Commun. Comput. 11, 455–462 (2001)

    Article  MATH  Google Scholar 

  2. Geramita, A.V., Kreuzer, M., Robbiano, L.: Cayley–Bacharach schemes and their canonical modules. Trans. Am. Math. Soc. 339(1), 163–189 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sarabia, M.G., Rentería, C.: Evaluation codes associated to complete bipartite graphs. Int. J. Algebra 2, 163–170 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Sarabia, M.G., Nava Lara, J., Márquez, C.R., Rosales, E.S.: Parameterized codes over cycles. An. St. Univ. Ovidius Constanta 21(3), 241–255 (2013)

    MATH  Google Scholar 

  5. Sarabia, M.G., Márquez, C.R., Rosales, E.S.: Parameterized codes over some embedded sets and their applications to complete graphs. Math. Commun. 18, 337–391 (2013)

    MathSciNet  Google Scholar 

  6. Sarabia, M.G., Márquez, C.R., Rosales, E.S.: Projective parameterized linear codes. An. St. Univ. Ovidius Constanta 23, 2 (2015)

    Google Scholar 

  7. Grayson D.R., Stillman M.: Macaulay2. Available via anonymous ftp from math.uiuc.edu (1996)

  8. Harris, J.: Algebraic Geometry. A First Course. Graduate Texts in Mathematics, vol. 133. Springer, New York (1992)

    Google Scholar 

  9. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  10. Neves, J., Vaz Pinto, M., Villarreal, R.H.: Vanishing ideals over graphs and even cycles. Commun. Algebra 43(3), 1050–1075 (2015)

    Article  MathSciNet  Google Scholar 

  11. Neves, J., Vaz Pinto, M.: Vanishing ideals over complete multipartite graphs. J. Pure Appl. Algebra 218(6), 1084–1094 (2014)

  12. Rentería, C., Simis, A., Villarreal, R.H.: Algebraic methods for parameterized codes and invariants of vanishing ideals over finite fields. Finite Fields Appl. 17, 81–104 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sarmiento, E.R., Vaz Pinto, M., Villarreal, R.H.: The minimum distance of parameterized codes on projective tori. Appl. Algebra Eng. Commun. Comput. 22, 249–264 (2010)

    Article  MathSciNet  Google Scholar 

  14. Tohǎneanu, S.O., Van Tuyl, A.: Bounding invariants of fat points using a coding theory construction. J. Pure Appl. Algebra 217, 269–279 (2013)

    Article  MathSciNet  Google Scholar 

  15. Vaz Pinto, M., Villarreal, R.H.: The degree and regularity of vanishing ideals of algebraic toric sets over finite fields. Commun. Algebra 41(9), 3376–3396 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Villarreal, R.H.: Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 238. Marcel Dekker, New York (2001)

    Google Scholar 

  17. Wei, V.K.: Hamming weights for linear codes. IEEE Trans. Inf. Theory 37, 1412–1418 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel González Sarabia.

Additional information

The first author is partially supported by COFAA–IPN and SNI–SEP. The second author is partially supported by SNI–SEP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarabia, M.G., Rosales, E.S. Parameterized codes associated to the edges of some subgraphs of a simple graph. AAECC 26, 493–505 (2015). https://doi.org/10.1007/s00200-015-0262-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-015-0262-7

Keywords

Mathematics Subject Classification

Navigation