[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Modelling algebraic structures and morphisms in ACL2

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we present how algebraic structures and morphisms can be modelled in the ACL2 theorem prover. Namely, we illustrate a methodology for implementing a set of tools that facilitates the formalisations related to algebraic structures—as a result, an algebraic hierarchy ranging from setoids to vector spaces has been developed. The resultant tools can be used to simplify the development of generic theories about algebraic structures. In particular, the benefits of using the tools presented in this paper, compared to a from-scratch approach, are especially relevant when working with complex mathematical structures; for example, the structures employed in Algebraic Topology. This work shows that ACL2 can be a suitable tool for formalising algebraic concepts coming, for instance, from computer algebra systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adams, A., et al.: Computer algebra meets automated theorem proving: integrating Maple and PVS. In: 14th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2001), Lecture Notes in Computer Science, vol. 2152, pp. 27–42 (2001)

  2. Andrés, M., Lambán, L., Rubio, J., Ruiz-Reina, J.L.: Formalizing simplicial topology in ACL2. In: 7th International Workshop on the ACL2 Theorem Prover and its Applications (ACL2 2007), pp. 34–39 (2007)

  3. Aransay, J., Ballarin, C., Rubio, J.: A mechanized proof of the Basic Perturbation Lemma. J. Autom. Reason. 40(4), 271–292 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aransay, J., Ballarin, C., Rubio, J.: Generating certified code from formal proofs: a case study in homological algebra. Formal Asp. Comput. 22(2), 193–213 (2010)

    Article  MATH  Google Scholar 

  5. Aransay, J., Divasón, J.: Formalization and execution of linear algebra: from theorems to algorithms. In: 23rd International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2013), Lecture Notes in Computer Science (2013) (in press)

  6. Armstrong, A., Struth, G., Weber, T.: Programming and automating mathematics in the Tarski-Kleene hierarchy. J. Log. Algebr. Methods Program. 83(2), 87–102 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bailey, A.: The Machine-Checked Literate Formalisation of Algebra in Type Theory. PhD thesis, Manchester University (1999)

  8. Ballarin, C.: Algebraic structures in Axiom and Isabelle: attempt at a comparison. In: Programming Languages for Mechanized Mathematics (PLMMS 2007), number 07–10 in RISC-Linz Report Series, pp. 75–80 (2007)

  9. Ballarin, C., Aransay, J., Hohe, S., Kammller, F., Paulson, L.: The Isabelle/HOL Algebra Library (2013). http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf

  10. Ballarin, C., Homann, K., Calmet, J.: Theorems and algorithms: an interface between Isabelle and Maple. In: 20th International Symposium on Symbolic and Algebraic Computation (ISSAC 1995). ACM Press, pp. 150–157 (1995)

  11. Bauer, A., Clarke, E.M., Zhao, X.: Analytica—an experiment in combining theorem proving and symbolic computation. J. Autom. Reason. 21(3), 295–325 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bishop, E.A.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  13. Brock, B.: Defstructure for ACL2 version 2.0. Technical report, Computational Logic Inc (1997). www.cs.utexas.edu/users/moore/publications/others/defstructure-brock.ps

  14. Capretta, V.: Universal algebra in type theory. In: 12th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 1999), Lecture Notes in Computer Science, vol. 1690, pp. 131–148 (1999)

  15. Castéran, P., Sozeau, M.: A Gentle Introduction to Type Classes and Relations in Coq. Technical report, INRIA (2014). http://hal.inria.fr/hal-00702455

  16. Chyzak, F., Mahboubi, A., Sibut-Pinote, T., Tassi, E.: A computer-algebra-based formal proof of the irrationality of \(\zeta (3)\). In: 5th International Conference on Interactive Theorem Proving (ITP 2014), Lecture Notes in Computer Science, vol. 8558, pp. 160–176 (2014)

  17. Denecke, K., Wismath, S.L.: Universal Algebra and Applications in Theoretical Computer Science. Chapman Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  18. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational algebra in Coq. In: 3rd International Conference on Interactive Theorem Proving (ITP 2012), Lecture Notes in Computer Science, vol. 7406, pp. 83–96 (2012)

  19. Domínguez, C., Rubio, J.: Computing in Coq with infinite algebraic data structures. In: 17th Symposium on the Integration of Symbolic Computation and Mechanised Reasoning (Calculemus 2010), Lecture Notes in Artificial Intelligence, vol. 6167, pp. 204–218 (2010)

  20. Domínguez, C., Rubio, J.: Effective Homology of Bicomplexes, formalized in Coq. Theor. Comput. Sci. 412, 962–970 (2011)

    Article  MATH  Google Scholar 

  21. Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The Kenzo program. Institut Fourier, Grenoble (1998). http://www-fourier.ujf-grenoble.fr/sergerar/Kenzo/

  22. Durán, A.J., Pérez, M., Varona, J.L.: The misfortunes of a mathematicians’ trio using computer algebra systems: can we trust? Not. Am. Math. Soc. 61(10), 1249–1252 (2014)

    Article  Google Scholar 

  23. Foster, S., Struth, G., Weber, T.: Automated engineering of relational and algebraic methods in Isabelle/HOL—(Invited Tutorial). In: 12th International Conference Relational and Algebraic Methods in Computer Science (RAMICS 2011), pp. 52–67 (2011)

  24. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: 22nd International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2009), Lecture Notes in Computer Science, vol. 5674, pp. 327–342 (2009)

  25. Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in Coq. J. Symb. Comput. 34(4), 271–286 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Geuvers, H., Wiedijk, F., Zwanenburg, J., Pollack, R., Barendregt, H.: The “Fundamental Theorem of Algebra” Project. Technical report (2000). http://www.cs.kun.nl/gi/projects/fta

  27. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: 4th International Conference on Interactive Theorem Proving (ITP 2013), Lecture Notes in Computer Science, vol. 7998, pp. 163–179 (2013)

  28. Greve, D.: Parameterized congruences in ACL2. In: 6th International Workshop on the ACL2 Theorem Prover and its Applications, pp. 28–34 (2006)

  29. Gunter, E.: Doing algebra in simple type theory. Technical Report MS-CIS-89-38, Department of Computer and Information Science, Moore School of Engineering, University of Pennsylvania (1989). http://repository.upenn.edu/cis_reports/789/

  30. Haftmann, F.: Haskell-style type classes with Isabelle/Isar. Technical report, Technische Universität München (2014). http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2014/doc/classes.pdf

  31. Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. J. Autom. Reason. 21(3), 279–294 (1998)

    Article  MATH  Google Scholar 

  32. Hearn, A.C., et al.: Reduce (2009). http://www.reduce-algebra.com/index.htm

  33. Heras, J.: Mathematical Knowledge Management in Algebraic Topology, chapter An ACL2 infrastructure to formalize Kenzo Higher Order constructors, PhD thesis, University of La Rioja, pp. 293–312 (2011). http://www.unirioja.es/servicios/sp/tesis/22488.shtml

  34. Heras, J., Martín-Mateos, F.J., Pascual, V.: Implementing Algebraic Structures in ACL2. Technical report, University of La Rioja (2012). http://www.unirioja.es/cu/joheras/ahomsia/

  35. Heras, J., Pascual, V., Rubio, J.: A certified module to study digital images with the Kenzo system. In: 13th International Conference on Computer Aided Systems Theory (EUROCAST 2011), Lecture Notes in Computer Science, vol. 6927, pp. 113–120 (2011)

  36. Heras, J., Pascual, V., Rubio, J.: Proving with ACL2 the correctness of simplicial sets in the Kenzo system. In: 20th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2010), Lecture Notes in Computer Science, vol. 6564, pp. 37–51 (2011)

  37. Jackson, P.: Enhancing the Nuprl Proof-Development System and Applying it to Computational Abstract Algebra. PhD thesis, Cornell University (1995)

  38. Jenks, R., Sutor, R.: AXIOM: The Scientific Computation System. Springer, Berlin (1992)

    MATH  Google Scholar 

  39. Journal of Formalized Mathematics. 1990-present. http://www.mizar.org/JFM/

  40. Kaliszyk, C., Wiedijk, F.: Certified computer algebra on top of an interactive theorem prover. In: 14th Symposium on the Integration of Symbolic Computation and Mechanised Reasoning (Calculemus 2007), Lecture Notes in Computer Science, vol. 4108, pp. 94–105 (2007)

  41. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer, Dordrecht (2000)

    Google Scholar 

  42. Kaufmann, M., Moore, J.S.: Structured theory development for a mechanized logic. J. Autom. Reason. 26(2), 161–203 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Kaufmann, M., Moore, J.S.: ACL2 version 6.5 (2014). http://www.cs.utexas.edu/users/moore/acl2/

  44. Lambán, L., Martín-Mateos, F.J., Ruiz-Reina, J.L., Rubio, J.: Formalization of a normalization theorem in simplicial topology. Ann. Math. Artif. Intell. 64(1), 1–37 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lambán, L., Pascual, V., Rubio, J.: Specifying implementations. In: 24th International Symposium on Symbolic and Algebraic Computation (ISSAC 1999), ACM Press, pp. 245–251 (1999)

  46. Lambán, L., Pascual, V., Rubio, J.: An object-oriented interpretation of the EAT system. Appl. Algebra Eng. Commun. Comput. 14, 187–215 (2003)

    Article  MATH  Google Scholar 

  47. Lambán, L., Rubio, J., Martín-Mateos, F.J., Ruiz-Reina, J.L.: Verifying the bridge between simplicial topology and algebra: the Eilenberg-Zilber algorithm. Log. J. IGPL 22(1), 39–65 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  48. Manolios, P., Moore, J.S.: Partial functions in ACL2. J. Autom. Reason. 31(2), 107–127 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. Martín-Mateos, F.J., Alonso, J.A., Hidalgo, M.J., Ruiz-Reina, J.L.: A generic instantiation tool and a case study: a generic multiset theory. In: 3rd International Workshop on the ACL2 Theorem Prover and its Applications (ACL2 2002), pp. 188–201 (2002)

  50. Martín-Mateos, F.J., Rubio, J., Ruiz-Reina, J.L.: ACL2 verification of simplicial degeneracy programs in the Kenzo system. In: 16th Symposium on the Integration of Symbolic Computation and Mechanised Reasoning (Calculemus 2009), of Lecture Notes in Computer Science, vol. 5625, pp. 106–121 (2009)

  51. Maunder, C.R.F.: Algebraic Topology. Dover, New York (1996)

    Google Scholar 

  52. Maxima, a Computer Algebra system (2012). http://maxima.sourceforge.net

  53. Medina-Bulo, I., Palomo-Lozano, F., Ruiz-Reina, J.L.: A verified Common Lisp implementation of Buchberger’s algorithm in ACL2. J. Symb. Comput. 45(1), 96–123 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  54. Naraschewski, W., Wenzel, M.: Object-oriented verification based on record subtyping in higher-order logic. In: 11th International Conference on Theorem Proving in Higher Order Logics (TPHOLs 1998), Lecture Notes in Computer Science, vol. 1479, pp. 349–366 (1998)

  55. Pessaux, F., Weia, P., Doligez, D.: The FoCaLiZe essential. Technical report (2010). http://focalize.inria.fr/

  56. Pottier, L.: User contributions in Coq, Algebra. Technical report (2001). http://coq.inria.fr/pylons/pylons/contribs/view/Algebra/v8.4

  57. Romero, A., Heras, J., Rubio, J., Sergeraert, F.: Defining and computing persistent Z-homology in the general case. CoRR, abs/1403.7086 (2014)

  58. Romero, A., Rubio, J.: Homotopy groups of suspended classifying spaces: an experimental approach. Math. Comput. 82, 2237–2244 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  59. Rubio, J., Sergeraert, F.: Constructive Homological Algebra and Applications. Algorithms, and Proofs. University of Genova, Lecture Notes Summer School on Mathematics (2006)

    Google Scholar 

  60. Rudnicki, P., Schwarzweller, C., Trybulec, A.: Commutative Algebra in the Mizar System. J. Symb. Comput. 32, 143–169 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  61. Sergeraert, F.: Effective Homology, a Survey. Technical report, Institut Fourier (1992). http://www-fourier.ujf-grenoble.fr/sergerar/Papers/Survey.pdf

  62. Sergeraert, F.: Common Lisp, Typing and Mathematics. Technical report, Institut Fourier (2001). http://www-fourier.ujf-grenoble.fr/sergerar/Papers/Ezcaray.pdf

  63. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. Math. Struct. Comput. Sci. 21, 795–825 (2011)

    Article  MATH  Google Scholar 

  64. Weibel, C.A.: An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  65. Yu, X., Hickey, J.: Formalizing Abstract Algebra in Constructive Set Theory. Technical report, California Institute of Technology (2003). http://authors.library.caltech.edu/27065/

  66. Zippel, R.: The weyl computer algebra substrate. In: International Symposium on Design and Implementation of Symbolic Computation Systems (DISCO 1993), Lecture Notes in Computer Science, vol. 722, pp. 303–318 (1993)

Download references

Acknowledgments

The authors would like to thank the reviewers for the useful suggestions andcomments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jónathan Heras.

Additional information

This work was partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by the European Union’s 7th Framework Programme under Grant Agreement No. 243847 (ForMath).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heras, J., Martín-Mateos, F.J. & Pascual, V. Modelling algebraic structures and morphisms in ACL2. AAECC 26, 277–303 (2015). https://doi.org/10.1007/s00200-015-0252-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-015-0252-9

Keywords

Navigation