Abstract
This article is devoted to algorithms for computing all the roots of a univariate polynomial with coefficients in a complete commutative Noetherian unramified regular local domain, which are given to a fixed common finite precision. We study the cost of our algorithms, discuss their practical performances, and apply our results to the Guruswami and Sudan list decoding algorithm over Galois rings.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alekhnovich, M.: Linear Diophantine equations over polynomials and soft decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 51(7), 2257–2265 (2005)
Armand, M.A.: Improved list decoding of generalized Reed–Solomon and alternant codes over rings. In: IEEE International Symposium on Information Theory 2004, (ISIT 2004), p. 384 (2004)
Armand, M.A.: List decoding of generalized Reed–Solomon codes over commutative rings. IEEE Trans. Inf. Theory 51(1), 411–419 (2005)
Augot, D., Barbier, M., Couvreur, A.: List-decoding of binary Goppa codes up to the binary Johnson bound. In: Information Theory Workshop (ITW), 2011 IEEE, pp. 229–233 (2011)
Augot, D., Zeh, A.: On the Roth and Ruckenstein equations for the Guruswami–Sudan algorithm. In: IEEE International Symposium on Information Theory-ISIT 2008, pp. 2620–2624. IEEE, Toronto, Canada (2008)
Bartley, K.G.: Decoding algorithms for algebraic geometric codes over rings. Ph.D. thesis, University of Nebraska (2006)
Berlekamp, E.R., Welch, L.R.: Error correction for algebraic block codes. Patent 4633470 (1986)
Berlekamp, E.R.: Algebraic Coding Theory. M-6. Aegean Park Press (1984)
Berthomieu, J., van der Hoeven, J., Lecerf, G.: Relaxed algorithms for \(p\)-adic numbers. J. Théor. Nombres Bordeaux. 23(3), 541–577 (2011)
Bini, D., Pan, V.Y.: Polynomial and Matrix Computations. Fundamental Algorithms. Progress in Theoretical Computer Science, vol. 1. Birkhäuser, Basel (1994)
Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complex. 21(4), 420–446 (2005)
Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inf. 28, 693–701 (1991)
Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. I. J. Complex. 2(4), 271–294 (1986)
Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. II. J. Complex. 3(1), 1–25 (1987)
Cohen, I.S.: On the structure and ideal theory of complete local rings. Trans. Am. Math. Soc. 59, 54–106 (1946)
Duval, D.: Rational Puiseux expansions. Compos. Math. 70(2), 119–154 (1989)
Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. Roy. Soc. Lond. Ser. A. 248, 407–432 (1956)
Fürer, M.: Faster integer multiplication. In: Proceedings of the Thirty-Ninth ACM Symposium on Theory of Computing (STOC 2007), pp. 57–66. ACM (2007)
Gao, S., Shrokrollahi, M.A.: Computing roots of polynomials over function fields of curves. In: Joyner, D. (ed.) Coding Theory and Cryptography: From Enigma and Geheimschreiber to Quantum Theory, pp. 214–228. Springer, Berlin (2000)
Gao, S.: A new algorithm for decoding Reed–Solomon codes. In: Bhargava, V., Poor, H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network Security, The Springer International Series in Engineering and Computer Science, vol. 712, pp. 55–68. Springer, US (2003)
Gaudry, P., Thomé, E.: MPFQ, a finite field library. Available at http://mpfq.gforge.inria.fr (2008)
Granlund, T., et al.: GMP, the GNU multiple precision arithmetic library. Available at http://gmplib.org (1991)
Griffiths, D.: Series expansions of algebraic functions. In: Bosma, W., Poorten, A. (eds.) Computational Algebra and Number Theory, Mathematics and Its Applications, vol. 325, pp. 267–277. Springer, Netherlands (1995)
Guruswami, V., Sudan, M.: Improved decoding of Reed–Solomon and algebraic-geometric codes. IEEE Trans. Inf. Theory 45, 1757–1767 (1998)
Hallouin, É.: Computing local integral closures. J. Symb. Comput. 32(3), 211–230 (2001)
Henry, J.P., Merle, M.: Complexity of computation of embedded resolution of algebraic curves. In: Proceedings of Eurocal 87, Lecture Notes in Computer Science, vol. 378, 381–390. Springer (1987)
Iwami, M.: Extension of expansion base algorithm for multivariate analytic factorization including the case of singular leading coefficient. SIGSAM Bull. 39(4), 122–126 (2005)
Kedlaya, K.S.: The algebraic closure of the power series field in positive characteristic. Proc. Am. Math. Soc. 129(12), 3461–3470 (2001)
Kötter, R.: On algebraic decoding of algebraic-geometric and cycling codes. Ph.D. thesis, Linköping University, Sweden (1996)
Kötter, R., Vardy, A.: Algebraic soft-decision decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 49(11), 2809–2825 (2003)
Kuo, T.C.: Generalized Newton-Puiseux theory and Hensel’s lemma in \({\mathbb{C}}[[x, y]]\). Canad. J. Math. 41(6), 1101–1116 (1989)
Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, Berlin (2002)
Lecerf, G.: Fast separable factorization and applications. Appl. Algebra Eng. Commun. Comput. 19(2), 135–160 (2008)
Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley-Interscience, New York (2005)
Poteaux, A., Rybowicz, M.: Complexity bounds for the rational Newton-Puiseux algorithm over finite fields. Appl. Algebra Eng. Commun. Comput. 22(3), 187–217 (2011)
Raghavendran, R.: Finite associative rings. Compos. Math. 21, 195–229 (1969)
Refslund Nielsen, R., Høholdt, T.: Decoding Reed–Solomon codes beyond half the minimum distance. In: Buchmann, J., Høholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptography and Related Areas, pp. 221–236. Springer, Berlin (2000)
Roth, R.M., Ruckenstein, G.: Efficient decoding of Reed–Solomon codes beyond half the minimum distance. In: IEEE International Symposium on Information Theory 1998, p. 56 (1998)
Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292 (1971)
Sudan, M.: Decoding of Reed–Solomon codes beyond the error-correction bound. J. Complex. 13(1), 180–193 (1997)
Truong, T.K., Eastman, W.L., Reed, I.S., Hsu, I.S.: Simplified procedure for correcting both errors and erasures of Reed–Solomon code using Euclidean algorithm. IEE Proc. Comput. Digit. Tech. 135(6), 318–324 (1988)
van der Hoeven, J., et al.: Mathemagix. Software available from http://www.mathemagix.org (2002)
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)
von zur Gathen, J.: Hensel and Newton methods in valuation rings. Math. Comp. 42(166), 637–661 (1984)
Walker, R.J.: Algebraic Curves. Springer, New York (1978). Reprint of the 1950 edition
Walker, J.L.: Algebraic geometric codes over rings. J. Pure Appl. Algebra 144(1), 91–110 (1999)
Walsh, P.G.: On the complexity of rational Puiseux expansions. Pac. J. Math. 188(2), 369–387 (1999)
Walsh, P.G.: A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function. Math. Comput. 69(231), 1167–1182 (2000)
Acknowledgments
This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX project, and by the Digiteo 2009-36HD grant of the Région Île-de-France. We would like to thank Daniel Augot and both referees for their useful comments on this article.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Berthomieu, J., Lecerf, G. & Quintin, G. Polynomial root finding over local rings and application to error correcting codes. AAECC 24, 413–443 (2013). https://doi.org/10.1007/s00200-013-0200-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-013-0200-5