[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Polynomial root finding over local rings and application to error correcting codes

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

This article is devoted to algorithms for computing all the roots of a univariate polynomial with coefficients in a complete commutative Noetherian unramified regular local domain, which are given to a fixed common finite precision. We study the cost of our algorithms, discuss their practical performances, and apply our results to the Guruswami and Sudan list decoding algorithm over Galois rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alekhnovich, M.: Linear Diophantine equations over polynomials and soft decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 51(7), 2257–2265 (2005)

    Article  MathSciNet  Google Scholar 

  2. Armand, M.A.: Improved list decoding of generalized Reed–Solomon and alternant codes over rings. In: IEEE International Symposium on Information Theory 2004, (ISIT 2004), p. 384 (2004)

  3. Armand, M.A.: List decoding of generalized Reed–Solomon codes over commutative rings. IEEE Trans. Inf. Theory 51(1), 411–419 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Augot, D., Barbier, M., Couvreur, A.: List-decoding of binary Goppa codes up to the binary Johnson bound. In: Information Theory Workshop (ITW), 2011 IEEE, pp. 229–233 (2011)

  5. Augot, D., Zeh, A.: On the Roth and Ruckenstein equations for the Guruswami–Sudan algorithm. In: IEEE International Symposium on Information Theory-ISIT 2008, pp. 2620–2624. IEEE, Toronto, Canada (2008)

  6. Bartley, K.G.: Decoding algorithms for algebraic geometric codes over rings. Ph.D. thesis, University of Nebraska (2006)

  7. Berlekamp, E.R., Welch, L.R.: Error correction for algebraic block codes. Patent 4633470 (1986)

  8. Berlekamp, E.R.: Algebraic Coding Theory. M-6. Aegean Park Press (1984)

  9. Berthomieu, J., van der Hoeven, J., Lecerf, G.: Relaxed algorithms for \(p\)-adic numbers. J. Théor. Nombres Bordeaux. 23(3), 541–577 (2011)

    Google Scholar 

  10. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations. Fundamental Algorithms. Progress in Theoretical Computer Science, vol. 1. Birkhäuser, Basel (1994)

    Book  Google Scholar 

  11. Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complex. 21(4), 420–446 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inf. 28, 693–701 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. I. J. Complex. 2(4), 271–294 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. II. J. Complex. 3(1), 1–25 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, I.S.: On the structure and ideal theory of complete local rings. Trans. Am. Math. Soc. 59, 54–106 (1946)

    Article  MATH  Google Scholar 

  16. Duval, D.: Rational Puiseux expansions. Compos. Math. 70(2), 119–154 (1989)

    MathSciNet  MATH  Google Scholar 

  17. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. Roy. Soc. Lond. Ser. A. 248, 407–432 (1956)

    Article  MATH  Google Scholar 

  18. Fürer, M.: Faster integer multiplication. In: Proceedings of the Thirty-Ninth ACM Symposium on Theory of Computing (STOC 2007), pp. 57–66. ACM (2007)

  19. Gao, S., Shrokrollahi, M.A.: Computing roots of polynomials over function fields of curves. In: Joyner, D. (ed.) Coding Theory and Cryptography: From Enigma and Geheimschreiber to Quantum Theory, pp. 214–228. Springer, Berlin (2000)

    Chapter  Google Scholar 

  20. Gao, S.: A new algorithm for decoding Reed–Solomon codes. In: Bhargava, V., Poor, H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network Security, The Springer International Series in Engineering and Computer Science, vol. 712, pp. 55–68. Springer, US (2003)

    Chapter  Google Scholar 

  21. Gaudry, P., Thomé, E.: MPFQ, a finite field library. Available at http://mpfq.gforge.inria.fr (2008)

  22. Granlund, T., et al.: GMP, the GNU multiple precision arithmetic library. Available at http://gmplib.org (1991)

  23. Griffiths, D.: Series expansions of algebraic functions. In: Bosma, W., Poorten, A. (eds.) Computational Algebra and Number Theory, Mathematics and Its Applications, vol. 325, pp. 267–277. Springer, Netherlands (1995)

    Google Scholar 

  24. Guruswami, V., Sudan, M.: Improved decoding of Reed–Solomon and algebraic-geometric codes. IEEE Trans. Inf. Theory 45, 1757–1767 (1998)

    Article  MathSciNet  Google Scholar 

  25. Hallouin, É.: Computing local integral closures. J. Symb. Comput. 32(3), 211–230 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Henry, J.P., Merle, M.: Complexity of computation of embedded resolution of algebraic curves. In: Proceedings of Eurocal 87, Lecture Notes in Computer Science, vol. 378, 381–390. Springer (1987)

  27. Iwami, M.: Extension of expansion base algorithm for multivariate analytic factorization including the case of singular leading coefficient. SIGSAM Bull. 39(4), 122–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kedlaya, K.S.: The algebraic closure of the power series field in positive characteristic. Proc. Am. Math. Soc. 129(12), 3461–3470 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kötter, R.: On algebraic decoding of algebraic-geometric and cycling codes. Ph.D. thesis, Linköping University, Sweden (1996)

  30. Kötter, R., Vardy, A.: Algebraic soft-decision decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 49(11), 2809–2825 (2003)

    Article  Google Scholar 

  31. Kuo, T.C.: Generalized Newton-Puiseux theory and Hensel’s lemma in \({\mathbb{C}}[[x, y]]\). Canad. J. Math. 41(6), 1101–1116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, Berlin (2002)

    Google Scholar 

  33. Lecerf, G.: Fast separable factorization and applications. Appl. Algebra Eng. Commun. Comput. 19(2), 135–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley-Interscience, New York (2005)

    Book  Google Scholar 

  35. Poteaux, A., Rybowicz, M.: Complexity bounds for the rational Newton-Puiseux algorithm over finite fields. Appl. Algebra Eng. Commun. Comput. 22(3), 187–217 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Raghavendran, R.: Finite associative rings. Compos. Math. 21, 195–229 (1969)

    MathSciNet  MATH  Google Scholar 

  37. Refslund Nielsen, R., Høholdt, T.: Decoding Reed–Solomon codes beyond half the minimum distance. In: Buchmann, J., Høholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptography and Related Areas, pp. 221–236. Springer, Berlin (2000)

    Chapter  Google Scholar 

  38. Roth, R.M., Ruckenstein, G.: Efficient decoding of Reed–Solomon codes beyond half the minimum distance. In: IEEE International Symposium on Information Theory 1998, p. 56 (1998)

  39. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292 (1971)

    Article  MATH  Google Scholar 

  40. Sudan, M.: Decoding of Reed–Solomon codes beyond the error-correction bound. J. Complex. 13(1), 180–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Truong, T.K., Eastman, W.L., Reed, I.S., Hsu, I.S.: Simplified procedure for correcting both errors and erasures of Reed–Solomon code using Euclidean algorithm. IEE Proc. Comput. Digit. Tech. 135(6), 318–324 (1988)

    Article  Google Scholar 

  42. van der Hoeven, J., et al.: Mathemagix. Software available from http://www.mathemagix.org (2002)

  43. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)

  44. von zur Gathen, J.: Hensel and Newton methods in valuation rings. Math. Comp. 42(166), 637–661 (1984)

    Google Scholar 

  45. Walker, R.J.: Algebraic Curves. Springer, New York (1978). Reprint of the 1950 edition

  46. Walker, J.L.: Algebraic geometric codes over rings. J. Pure Appl. Algebra 144(1), 91–110 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Walsh, P.G.: On the complexity of rational Puiseux expansions. Pac. J. Math. 188(2), 369–387 (1999)

    Article  MATH  Google Scholar 

  48. Walsh, P.G.: A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function. Math. Comput. 69(231), 1167–1182 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX project, and by the Digiteo 2009-36HD grant of the Région Île-de-France. We would like to thank Daniel Augot and both referees for their useful comments on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Quintin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthomieu, J., Lecerf, G. & Quintin, G. Polynomial root finding over local rings and application to error correcting codes. AAECC 24, 413–443 (2013). https://doi.org/10.1007/s00200-013-0200-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-013-0200-5

Keywords

Mathematics Subject Classification (2000)

Navigation