Abstract.
We provide an algebraic framework to compute smallest enclosing and smallest circumscribing cylinders of simplices in Euclidean space n. Explicitly, the computation of a smallest enclosing cylinder in 3 is reduced to the computation of a smallest circumscribing cylinder. We improve existing polynomial formulations to compute the locally extreme circumscribing cylinders in 3 and exhibit subclasses of simplices where the algebraic degrees can be further reduced. Moreover, we generalize these efficient formulations to the n-dimensional case and provide bounds on the number of local extrema. Using elementary invariant theory, we prove structural results on the direction vectors of any locally extreme circumscribing cylinder for regular simplices.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agarwal, P.K., Aronov, B., Sharir, M.: Line transversals of balls and smallest enclosing cylinders in three dimensions. Discrete Comput. Geom. 21, 373–388 (1999)
Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Springer-Verlag, Berlin, 1934
Brandenberg, R.: Radii of Convex Bodies. Ph.D. thesis, Dept. of Mathematics, Technische Universität München, 2002. http://tumb1.biblio.tu-muenchen.de/publ/diss/ ma/2002/brandenberg.html~
Brandenberg, R.: Radii of regular polytopes. Preprint, 2003. math.GM/0308121
Brandenberg, R., Theobald, T.: Radii minimal projections of simplices and constrained optimization of symmetric polynomials. Preprint, 2003. math.MG/0311017
Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Internat. J. Comp. Geom. Appl. 12, 67–85 (2002)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. UTM, Springer-Verlag, New York, 1996, second edition
Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, 185, Springer-Verlag, New York, 1998
Coxeter, H.S.M.: Introduction to Geometry. John Wiley & Sons, 1961
Devillers, O., Mourrain, B., Preparata, F.P., Trébuchet, Ph.: On circular cylinders through four or five points in space. Discrete Comput. Geom. 29, 83–104 (2002)
Dos Reis, G., Mourrain, B., Rouillier, F., Trébuchet, Ph.: SYNAPS: An environment for symbolic and numeric computation. Proc. International Congress of Mathematical Software 2002, Beijing, 239-249, World Scientific, 2002
Eggleston, H.G.: Notes on Minkowski geometry (I): Relations between the circumradius, diameter, inradius, and minimal width of a convex set. J. London Math. Soc. 33, 76–81 (1958)
Emiris, I., Canny, J.: Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Comp. 20, 117–149 (1995)
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics. Addison-Wesley, 1989
Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 2.0. A computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserslautern, 2001. http://www.singular.uni-kl.de~
Gritzmann, P., Klee, V.: Inner and outer j-radii of convex bodies in finite-dimensional normed spaces. Discrete Comput. Geom. 7, 255–280 (1992)
Gritzmann, P., Klee, V.: Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces. Math. Program. 59A, 163–213 (1993)
Gritzmann, P., Klee, V.: Computational convexity. In Handbook of Discrete and Computational Geometry (J.E. Goodman, J. O’Rourke, eds.), 491–515, CRC Press, Boca Raton, 1997
Har-Peled, S., Varadarajan, K.: Projective clustering in high dimensions using core sets. Proc. ACM Symposium on Computational Geometry ‘02 (Barcelona), 312–318, 2002
Hilbert, D., Cohn-Vossen, S.: Anschauliche Geometrie. Springer-Verlag, Berlin, 1932. Translation: Geometry and the Imagination. Chelsea Publ., New York, 1952
Kupitz, Y.S., Martini, H.: Equifacial tetrahedra and a famous location problem. Math. Gazette 83, 464–467 (1999)
Macdonald, I.G., Pach, J., Theobald, T.: Common tangents to four unit balls in ℝ3. Discrete Comput. Geom. 26, 1–17 (2001)
Schaal, H.: Ein geometrisches Problem der metrischen Getriebesynthese. In Sitzungsber., Abt. II, Österr. Akad. Wiss. 194, 39–53 (1985)
Schömer, E., Sellen, J., Teichmann, M., Yap, C.: Smallest enclosing cylinders. Algorithmica 27, 170–186 (2000)
Stanley, R.P.: Enumerative Combinatorics. Cambridge University Press, 1997
Sottile, F., Theobald, T.: Lines tangent to 2n-2 spheres in ℝn. Trans. Amer. Math. Soc. 354, 4815–4829 (2002)
Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS series, 97, AMS, Providence, 2002
Sturmfels, B.: Algorithms in Invariant Theory. RISC Series in Symbolic Computation, Springer-Verlag, Wien, 1993
Theobald, T.: Visibility computations: From discrete algorithms to real algebraic geometry. In S. Basu and L. Gonzalez-Vega (eds.), Algorithmic and Quantitative Real Algebraic Geometry in Mathematics and Computer Science, AMS DIMACS series, 60, 207–219 (2003)
Verschelde, J.: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Software 25, 251–276 (1999)
Weißbach, B.: Über die senkrechten Projektionen regulärer Simplexe. Beitr. Algebra Geom. 15, 35–41 (1983)
Weißbach, B.: Über Umkugeln von Projektionen regulärer Simplexe. Beitr. Algebra Geom. 16, 127–137 (1983)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brandenberg, R., Theobald, T. Algebraic Methods for Computing Smallest Enclosing and Circumscribing Cylinders of Simplices. AAECC 14, 439–460 (2004). https://doi.org/10.1007/s00200-003-0146-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-003-0146-0