Abstract
Various new nonembeddability results (mainly into L 1) are proved via Fourier analysis. In particular, it is shown that the Edit Distance on {0,1}d has L 1 distortion We also give new lower bounds on the L 1 distortion of flat tori, quotients of the discrete hypercube under group actions, and the transportation cost (Earthmover) metric.
Similar content being viewed by others
References
Andoni, A., Deza, M., Gupta, A., Indyk, P., Raskhodnikova, S.: Lower bounds for embedding edit distance into normed spaces. In: SODA '03: Proceedings of the fourteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp 523–526. Society for Industrial and Applied Mathematics, 2003
Archer, A., Fakcharoenphol, J., Harrelson, C., Krauthgamer, R., Talwar, K., Tardos, E.: Approximate classification via earthmover metrics. In: SODA '04: Proceedings of the fifteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp 1079–1087. Society for Industrial and Applied Mathematics, 2004
Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (electronic), (1998)
Ball, K., Carlen, E.A., Lieb, E.H.: Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115(3), 463–482 (1994)
Bar-Yossef, Z., Jayram, T.S., Krauthgamer, R., Kumar, R.: Approximating edit distance efficiently. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp 550–559. IEEE, Oct. 2004
Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena. Ann. Math. 162(2), 643–709 (2005)
Bates, J., Johnson, W.B., Lindenstrauss, J., Preiss, D., Schechtman, G.: Affine approximation of Lipschitz functions and nonlinear quotients. Geom. Funct. Anal. 9(6), 1092–1127 (1999)
Batu, T., Ergun, F., Kilian, J., Magen, A., Raskhodnikova, S., Rubinfeld, R., Sami, R.: A sublinear algorithm for weakly approximating edit distance. In: STOC '03: Proceedings of the thirty-fifth annual ACM Symposium on Theory of Computing, pp 316–324. New York, NY, USA, ACM Press, 2003
Beckner, W.: Inequalities in Fourier analysis. Ann. of Math. (2) 102(1), 159–182 (1975)
Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2000
Beutelspacher, A., Rosenbaum, U.: Projective geometry: from foundations to applications. Cambridge University Press, Cambridge, 1998
Bonami, A.: Étude des coefficients de Fourier des fonctions de L p(G). Ann. Inst. Fourier (Grenoble), 20(fasc. 2), 335–402 (1971), (1970)
Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52(1–2), 46–52 (1985)
Bourgain, J.: The metrical interpretation of superreflexivity in Banach spaces. Israel J. Math. 56(2), 222–230 (1986)
Bourgain, J.: On the distributions of the Fourier spectrum of Boolean functions. Israel J. Math. 131, 269–276 (2002)
Bourgain, J., Kalai, G.: Influences of variables and threshold intervals under group symmetries. Geom. Funct. Anal. 7(3), 438–461 (1997)
Bourgain, J., Milman, V., Wolfson, H.: On type of metric spaces. Trans. Amer. Math. Soc. 294(1), 295–317 (1986)
Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999
Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(2), 213–230 (1982)
Charikar, M., Krauthgamer, R.: Embedding edit distance submetrics into ℓ1. Manuscript, 2005
Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC '02: Proceedings of the thiry-fourth annual ACM Symposium on Theory of Computing, pp 380–388. ACM Press, 2002
Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp 195–199. Princeton Univ. Press, Princeton, N. J., 1970
Chekuri, C., Khanna, S., Naor, J., Zosin, L.: Approximation algorithms for the metric labeling problem via a new linear programming formulation. In: SODA '01: Proceedings of the twelfth annual ACM-SIAM Symposium on Discrete Algorithms, pp 109–118. Society for Industrial and Applied Mathematics, 2001
Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In: SODA '02: Proceedings of the thirteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp 667–676. Society for Industrial and Applied Mathematics, 2002
Deza, M.M., Laurent, M.: Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1997
Enflo, P.: On the nonexistence of uniform homeomorphisms between L p -spaces. Ark. Mat. 8, 103–105 (1969)
Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, volume 152 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1999. Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates
Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers, volume 37 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, second edition, 1987
Guibas, L.J., Rubner, Y., Tomassi, C.: The earth mover's distance as a metric for image retrieval. Int. J Comput. Vis. 40(2), 99–121 (2000)
Gusfield, D.: Algorithms on strings, trees, and sequences. Cambridge University Press, Cambridge, 1997. Computer science and computational biology
Indyk, P.: Approximate nearest neighbor under edit distance via product metrics. In: SODA '04: Proceedings of the fifteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp 646–650. Society for Industrial and Applied Mathematics, 2004
Indyk, P., Thaper, N.: Fast image retrieval via embeddings. In: ICCV '03: Proceedings of the 3rd International Workshop on Statistical and Computational Theories of Vision, 2003
Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: 29th Symposium on Foundations of Computer Science, pp 68–80 (1988)
Kassabov, M.: Symmetric groups and expander graphs. Manuscript, 2005. Available online at http://arxiv.org/abs/math.GR/0505624
Khot, S., Naor, A.: Nonembeddability theorems via Fourier analysis (with an appendix on quantitative estimates in Bourgain's noise sensitivity theorem). Available online at http://arxiv.org/abs/math/0510547
Khot, S., Vishnoi, N.: The unique games conjecture, integrality gap for cut problems, and embeddability of negative type metrics into L 1. In: 46th Annual IEEE Symposium on Foundations of Computer Science, pp 53–62. IEEE, Oct. 2005
Lagarias, J.C., Lenstra, H.W. JR., Schnorr, C.P.: Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348 (1990)
Ledoux, M.: The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Dokl. 10, 707–710 (1965)
Linial, N.: Finite metric spaces – combinatorics, geometry and algorithms. In: Proceedings of the International Congress of Mathematicians III, pp 573–586, 2002
Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)
MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. I, Vol. 16. North-Holland Publishing Co., Amsterdam, North-Holland Mathematical Library, 1977
Martinet, J.: Perfect lattices in Euclidean spaces, volume 327 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2003
Matoušek, J.: On embedding expanders into l p spaces. Israel J. Math. 102, 189–197 (1997)
Matoušek, J.: Open problems on embeddings of finite metric spaces. Available online at http://kam.mff.cuni.cz/~matousek/metrop.ps.gz, 2002
Mendel, M., Naor, A.: Euclidean quotients of finite metric spaces. Adv. Math. 189(2), 451–494 (2004)
Mendel, M., Naor, A.: Metric cotype. Manuscript, 2005. Available online at http://arxiv.org/abs/math.FA/0506201
Micciancio, D., Goldwasser, S.: Complexity of lattice problems. The Kluwer International Series in Engineering and Computer Science, 671. Kluwer Academic Publishers, Boston, MA, 2002. A cryptographic perspective
Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov
Muthukrishnan, S., Sahinalp, S.C.: Approximate nearest neighbors and sequence comparison with block operations. In: STOC 2000: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp 416–424, 2000
Naor, A., Peres, Y., Schramm, O., Sheffield, S.: Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces. Manuscript, 2004. Available online at http://arxiv.org/abs/math.FA/0410422
Naor, A., Rabani, Y., Sinclair, A.: Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs. J. Funct. Anal. 227(2), 273–303 (2005)
Naor, A., Schechtman, G.: Remarks on non linear type and Pisier's inequality. J. Reine Angew. Math. 552, 213–236 (2002)
Nash, J.: C 1 isometric imbeddings. Ann. of Math. (2) 60, 383–396 (1954)
Ostrovsky, R., Rabani, Y.: Low distortion embeddings for edit distance. In: STOC 2005: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp 218–224, 2005
Pisier, G.: Martingales with values in uniformly convex spaces. Israel J. Math. 20(3–4), 326–350 (1975)
Pisier, G.: Probabilistic methods in the geometry of Banach spaces. In: Probability and analysis (Varenna, 1985), volume 1206 of Lecture Notes in Math., pp 167–241. Springer, Berlin, 1986
Rozenman, E., Shalev, A., Wigderson, A.: A new family of Cayley expanders? In: STOC 2004: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp 445–454, 2004
Schechtman, G.: Lévy type inequality for a class of finite metric spaces. In: Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981), volume 939 of Lecture Notes in Math., pp 211–215. Springer, Berlin, 1982
Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32
Villani, C.: Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003
Zong, C.: From deep holes to free planes. Bull. Amer. Math. Soc. (N.S.) 39(4), 533–555 (electronic), 2002
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khot, S., Naor, A. Nonembeddability theorems via Fourier analysis. Math. Ann. 334, 821–852 (2006). https://doi.org/10.1007/s00208-005-0745-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-005-0745-0