[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Inhibition of TGFβ type I receptor activity facilitates liver regeneration upon acute CCl4 intoxication in mice

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Liver exhibits a remarkable maintenance of functional homeostasis in the presence of a variety of damaging toxic factors. Tissue regeneration involves cell replenishment and extracellular matrix remodeling. Key regulator of homeostasis is the transforming growth factor-β (TGFβ) cytokine. To understand the role of TGFβ during liver regeneration, we used the single-dose carbon tetrachloride (CCl4) treatment in mice as a model of acute liver damage. We combined this with in vivo inhibition of the TGFβ pathway by a small molecule inhibitor, LY364947, which targets the TGFβ type I receptor kinase [activin receptor-like kinase 5 (ALK5)] in hepatocytes but not in activated stellate cells. Co-administration of LY364947 inhibitor and CCl4 toxic agent resulted in enhanced liver regeneration; cell proliferation (measured by PCNA, phosphorylated histone 3, p21) levels were increased in CCl4 + LY364947 versus CCl4-treated mice. Recovery of CCl4-metabolizing enzyme CYP2E1 expression in hepatocytes is enhanced 7 days after CCl4 intoxication in the mice that received also the TGFβ inhibitor. In summary, a small molecule inhibitor that blocks ALK5 downstream signaling and halts the cytostatic role of TGFβ pathway results in increased cell regeneration and improved liver function during acute liver damage. Thus, in vivo ALK5 modulation offers insight into the role of TGFβ, not only in matrix remodeling and fibrosis, but also in cell regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFβ activation. J Cell Sci 116:217–224

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    Article  CAS  PubMed  Google Scholar 

  • Böhm F, Köhler UA, Speicher T, Werner S (2010) Regulation of liver regeneration by growth factors and cytokines. EMBO Mol Med 2:294–305

    Article  PubMed Central  PubMed  Google Scholar 

  • Border WA, Noble NA (1994) Transforming growth factor β in tissue fibrosis. N Engl J Med 331:1286–1292

    Article  CAS  PubMed  Google Scholar 

  • Braun L, Mead JE, Panzica M, Mikumo R, Bell GI, Fausto N (1988) Transforming growth factor β mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation. Proc Natl Acad Sci USA 85:1539–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai Y, Gong L, Qi X, Li X, Ren J (2005) Apoptosis initiated by carbon tetrachloride in mitochondria of rat primary cultured hepatocytes. Acta Pharmacol Sin 26:969–975

    Article  CAS  PubMed  Google Scholar 

  • Chu W, Li C, Qu X et al (2012) Arsenic-induced interstitial myocardial fibrosis reveals a new insight into drug-induced long QT syndrome. Cardiovasc Res 96:90–98

    Article  CAS  PubMed  Google Scholar 

  • de Gouville AC, Boullay V, Krysa G et al (2005) Inhibition of TGF-β signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol 145:166–177

    Article  PubMed Central  PubMed  Google Scholar 

  • Dooley S, ten Dijke P (2012) TGF-β in progression of liver disease. Cell Tissue Res 347:245–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fausto N (2004) Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39:1477–1487

    Article  PubMed  Google Scholar 

  • Flanders KC, Sullivan CD, Fujii M et al (2002) Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 160:1057–1068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghafoory S, Breitkopf-Heinlein K, Li Q, Scholl C, Dooley S, Wölfl S (2013) Zonation of nitrogen and glucose metabolism gene expression upon acute liver damage in mouse. Plos One 8:e78262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghavami S, Hashemi M, Ande SR et al (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46:497–510

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Ammanamanchi S, Ko TC, Brattain MG (2003) Transforming growth factor β1 increases the stability of p21/WAF1/CIP1 protein and inhibits CDK2 kinase activity in human colon carcinoma FET cells. Cancer Res 63:3340–3346

    CAS  PubMed  Google Scholar 

  • Gu L, Zhu Y, Yang X, Guo Z, Xu W, Tian X (2007) Effect of TGF-β/Smad signaling pathway on lung myofibroblast differentiation. Acta Pharmacol Sin 28:382–391

    Article  CAS  PubMed  Google Scholar 

  • Guidotti JE, Brégerie O, Robert A, Debey P, Brechot C, Desdouets C (2003) Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278:19095–19101

    Article  CAS  PubMed  Google Scholar 

  • Hautmann MB, Madsen CS, Owens GK (1997) A transforming growth factor β (TGFβ) control element drives TGFβ-induced stimulation of smooth muscle α-actin gene expression in concert with two CArG elements. J Biol Chem 272:10948–10956

    Article  CAS  PubMed  Google Scholar 

  • Heldin CH, Miyazono K, ten Dijke P (1997) TGF-β signaling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    Article  CAS  PubMed  Google Scholar 

  • Heldin CH, Landström M, Moustakas A (2009) Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Curr Opin Cell Biol 21:166–176

    Article  CAS  PubMed  Google Scholar 

  • Inman GJ, Nicolás FJ, Callahan JF et al (2002) SB-431542 is a potent and specific inhibitor of Transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  CAS  PubMed  Google Scholar 

  • Jeong DH, Hwang M, Park JK et al (2013) Smad3 deficiency ameliorates hepatic fibrogenesis through the expression of senescence marker protein-30, an antioxidant-related protein. Int J Mol Sci 14:23700–23710

    Article  PubMed Central  PubMed  Google Scholar 

  • Kodama T, Takehara T, Hikita H et al (2011) Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice. J Clin Investig 121:3343–3356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laping NJ, Grygielko E, Mathur A et al (2002) Inhibition of Transforming growth factor (TGF)-β1–induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64

    Article  CAS  PubMed  Google Scholar 

  • Leask A (2010) Potential therapeutic targets for cardiac fibrosis: TGF-β, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106:1675–1680

    Article  CAS  PubMed  Google Scholar 

  • Li C, Suardet L, Little JB (1995) Potential role of WAF1/Cip1/p21 as a mediator of TGF-β cytoinhibitory effect. J Biol Chem 270:4971–4974

    Article  CAS  PubMed  Google Scholar 

  • Manapov F, Muller P, Rychly J (2005) Translocation of p21Cip1/WAF1 from the nucleus to the cytoplasm correlates with pancreatic myofibroblast to fibroblast cell conversion. Gut 54:814–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marhenke S, Buitrago-Molina LE, Endig J et al (2014) p21 promotes sustained liver regeneration and hepatocarcinogenesis in chronic cholestatic liver injury. Gut 63:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Massagué J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    Article  PubMed  Google Scholar 

  • Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213:286–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naka K, Hoshii T, Muraguchi T et al (2010) TGF-β-FOXO signaling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463:676–680

    Article  CAS  PubMed  Google Scholar 

  • Oka M, Iwata C, Suzuki HI et al (2008) Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood 111:4571–4579

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Thorikay M, Deckers M et al (2007) Oral administration of GW788388, an inhibitor of TGF-β type I and II receptor kinases, decreases renal fibrosis. Kidney Int 73:705–715

    Article  PubMed  Google Scholar 

  • Pierce RA, Glaug MR, Greco RS, Mackenzie JW, Boyd CD, Deak SB (1987) Increased procollagen mRNA levels in carbon tetrachloride-induced liver fibrosis in rats. J Biol Chem 262:1652–1658

    CAS  PubMed  Google Scholar 

  • Romero-Gallo J, Sozmen EG, Chytil A et al (2005) Inactivation of TGF-β signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene 24:3028–3041

    Article  CAS  PubMed  Google Scholar 

  • Roy SG, Nozaki Y, Phan SH (2001) Regulation of α-smooth muscle actin gene expression in myofibroblast differentiation from rat lung fibroblasts. Int J Biochem Cell Biol 33:723–734

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Investig 112:1486–1494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato Y, Murase K, Kato J et al (2008) Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotech 26:431–442

    Article  CAS  Google Scholar 

  • Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 250:273–283

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino A, Thakur N, Grimsby S et al (2008) The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10:1199–1207

    Article  CAS  PubMed  Google Scholar 

  • Tahashi Y, Matsuzaki K, Date M et al (2002) Differential regulation of TGF-β signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 35:49–61

    Article  CAS  PubMed  Google Scholar 

  • van Beuge MM, Prakash J, Lacombe M et al (2013) Enhanced effectivity of an ALK5-inhibitor after cell-specific delivery to hepatic stellate cells in mice with liver injury. Plos One 8:e56442

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogt J, Traynor R, Sapkota GP (2011) The specificities of small molecule inhibitors of the TGF-β and BMP pathways. Cell Signal 23:1831–1842

    Article  CAS  PubMed  Google Scholar 

  • Weber LWD, Boll M, Stampfl A (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 33:105–136

    Article  CAS  PubMed  Google Scholar 

  • Wells RG (2005) The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol 39:S158–S161

    Article  CAS  PubMed  Google Scholar 

  • Wiercinska E, Wickert L, Denecke B et al (2006) Id1 is a critical mediator in TGF-β–induced transdifferentiation of rat hepatic stellate cells. Hepatology 43:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Wong FWY, Chan WY, Lee SST (1998) Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol 153:109–118

    Article  CAS  PubMed  Google Scholar 

  • Yingling JM, Blanchard KL, Sawyer JS (2004) Development of TGF-β signaling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka N, Kimura-Kuroda J, Saito T, Kawamura K, Hisanaga S-I, Kawano H (2011) Small molecule inhibitor of type I transforming growth factor-β receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. J Neurosci Res 89:381–393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Netherlands Organization for Scientific Research (NWO-MW), Netherlands Institute for Regenerative Medicine (NIRM). This work was also supported in part by Marie Curie Initial Training Network (ITN) IT-Liver grant. We thank our colleagues, Dr. Boudewijn Kruithof and Prof. B. van de Water for valuable advice and discussion and Dr. David Scholten for the Col-GFP HSC cell line.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Kruithof-de Julio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2080 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkampouna, S., Goumans, MJ., ten Dijke, P. et al. Inhibition of TGFβ type I receptor activity facilitates liver regeneration upon acute CCl4 intoxication in mice. Arch Toxicol 90, 347–357 (2016). https://doi.org/10.1007/s00204-014-1436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1436-y

Keywords

Navigation