[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Combined difference square observation-based ambiguity determination for ground-based positioning system

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In the absence of a global navigation satellite system, a ground-based positioning system can provide stand-alone positioning service and has advantages in layout flexibility of terrestrial base stations that broadcast ranging signals. To realize precise point positioning (PPP) in ground-based positioning systems, the carrier phase ambiguity must be determined for the receiver. On-the-fly (OTF) ambiguity determination methods are desirable for their convenience in practice. In most existing OTF methods based on the initial position estimate obtained from code measurements or other measuring instruments, the nonlinear term representing true distances are linearized by a series expansion. However, due to the severe nonlinear effects, if the accuracy of the initial position estimate is relatively poor, such linearization will result in large errors and convergence difficulties. Moreover, the more accurate initial estimate a method requires, the more inconvenient it will be. To avoid the dependence on the initial estimate, we proposed a combined difference square (CDS) observation and it provides a framework to eliminate the nonlinear terms in the difference square observations by linear combination. Based on this, a rotational-symmetry CDS (RS-CDS) observation-based ambiguity determination method is proposed, which needs no a priori information or reliable code measurements and is especially suitable for dynamic applications. In addition, it does not require accurate time synchronization of base stations, making the deployment of the overall system easier. The numerical simulations show that geometry diversity effectively improves the performance of ambiguity determination. Two real-world experiments indicate that the proposed method enables PPP for ground-based positioning systems without accurate time synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Amt JH (2006) Methods for aiding height determination in pseudolite-based reference systems using batch least-squares estimation. Master thesis, Air Force Institute of Technology

  • Barnes J, Rizos C, Wang J, Small D, Voigt G, Gambale N (2003) Locata: A new positioning technology for high precision indoor and outdoor positioning. In: ION GPS/GNSS, pp 1119–1128

  • Bertsch J, Choudhury M, Rizos C, Kahle H (2009) On-the-fly ambiguity resolution for Locata. In: International symposium on GPS/GNSS, pp 1–3

  • Beser J, Parkinson BW (1982) The application of NAVSTAR differential GPS in the civilian community. Navigation 29:107–136

    Article  Google Scholar 

  • Cobb HS (1997) GPS pseudolites: theory, design, and applications. Doctor thesis, Stanford University

  • Dai L, Wang J, Tsujii T, Rizos C (2001) Pseudolite applications in positioning and navigation: modelling and geometric analysis. In: International symposium on kinematic systems in geodesy, geomatics & navigation (KIS2001), pp 482–489

  • Guo X, Zhou Y, Wang J, Liu K, Liu C (2018) Precise point positioning for ground-based navigation systems without accurate time synchronization. GPS Solut 22(2):34. https://doi.org/10.1007/s10291-018-0697-y

    Article  Google Scholar 

  • Jiang W, Li Y, Rizos C (2013) On-the-fly Locata/inertial navigation system integration for precise maritime application. Meas Sci Technol 24(10):105104. https://doi.org/10.1088/0957-0233/24/10/105104

    Article  Google Scholar 

  • Jiang W, Li Y, Rizos C (2015) Locata-based precise point positioning for kinematic maritime applications. GPS Solut 19(1):117–128. https://doi.org/10.1007/s10291-014-0373-9

    Article  Google Scholar 

  • Kee C, Jun H, Yun D (2003) Indoor navigation system using asynchronous pseudolites. J Navig 56(3):443–455. https://doi.org/10.1017/S0373463303002467

    Article  Google Scholar 

  • Khan FA, Rizos C, Dempster AG (2010) Locata performance evaluation in the presence of wide- and narrow-band interference. J Navig 63(3):527–543. https://doi.org/10.1017/S037346331000007X

    Article  Google Scholar 

  • Kiran S, Bartone CG (2004) Flight-test results of an integrated wideband-only airport pseudolite for the category IV/III local area augmentation system. IEEE Trans Aerosp Electron Syst 40(2):734–741

    Article  Google Scholar 

  • Lee HK, Wang J, Rizos C, Park W (2003) Carrier phase processing issues for high accuracy integrated GPS/pseudolite/INS systems. In: Proceedings of 11th IAIN world congress, Berlin, Germany, paper 252

  • Lee HK, Wang J, Rizos C (2005) An integer ambiguity resolution procedure for GPS/pseudolite/INS integration. J Geodesy 79(4–5):242–255. https://doi.org/10.1007/s00190-005-0466-x

    Article  Google Scholar 

  • Li X, Zhang P, Guo J, Wang J, Qiu W (2017) A new method for single-epoch ambiguity resolution with indoor pseudolite positioning. Sensors 17(4):921. https://doi.org/10.3390/s17040921

    Article  Google Scholar 

  • Lombardi M (2002) Fundamentals of time and frequency. Book section 17, CRC Press. https://doi.org/10.1201/9781420037241.ch10

    Google Scholar 

  • Montillet JP, Roberts GW, Hancock C, Meng X, Ogundipe O, Barnes J (2009) Deploying a Locata network to enable precise positioning in urban canyons. J Geodesy 83(2):91–103. https://doi.org/10.1007/s00190-008-0236-7

    Article  Google Scholar 

  • Montillet JP, Bonenberg LK, Hancock CM, Roberts GW (2014) On the improvements of the single point positioning accuracy with Locata technology. GPS Solut 18(2):273–282. https://doi.org/10.1007/s10291-013-0328-6

    Article  Google Scholar 

  • Niwa H, Kodaka K, Sakamoto Y, Otake M, Kawaguchi S, Fujii K, Kanemori Y, Sugano S (2008) GPS-based indoor positioning system with multi-channel pseudolite. In: 2008 IEEE international conference on robotics and automation, IEEE, New York, USA, pp 905–910

  • Teunissen PJ, Odijk D (1997) Ambiguity dilution of precision: definition, properties and application. In: Proceedings of ION GPS 1997, Kansas City, MO, USA, pp 891–899

  • Wang J (2002) Pseudolite applications in positioning and navigation: progress and problems. J Glob Position Syst 1(1):48–56

    Article  Google Scholar 

  • Wang T, Yao Z, Lu M (2018) On-the-fly ambiguity resolution based on double-differential square observation. Sensors 18(8):2495. https://doi.org/10.3390/s18082495

    Article  Google Scholar 

  • Wang T, Yao Z, Lu M (2019) On-the-fly ambiguity resolution involving only carrier phase measurements for stand-alone ground-based positioning systems. GPS Solut 23(2):36. https://doi.org/10.1007/s10291-019-0825-3

    Article  Google Scholar 

  • Yang L, Li Y, Jiang W, Rizos C (2015) Locata network design and reliability analysis for harbour positioning. J Navig 68(2):238–252. https://doi.org/10.1017/S0373463314000605

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC), under Grant 61771272. The datasets of the two experiments are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Yao.

Appendices

Appendix A: RS-CDS observations at a same position

In the following analysis, the noise is temporarily ignored, and it will be seen that an RS-CDS observation can be linearly represented by others at the same position.

Assume \({\mathbf {u}}_{m_{1}}={\mathbf {u}}_{m_{q}}\)for \(1\le q\le M\). Then, with (1) and (4), we have

$$\begin{aligned} \phi _{m_{1}}^{i}-\phi _{m_{q}}^{i}=f_{c}\tau (m_{1}-m_{q}) \end{aligned}$$
(31)

and

$$\begin{aligned} \phi _{m_{q}}^{ij}= & {} \lambda ^{-1}(\Vert {\mathbf {s}}_{i}-{\mathbf {u}}_{m_{q}}\Vert -\Vert {\mathbf {s}}_{j}-{\mathbf {u}}_{m_{q}}\Vert )+N_{ij}-f_{c}\delta t_{ij}.\nonumber \\ \end{aligned}$$
(32)

With (32), it can be obtained that

$$\begin{aligned} \phi _{m_{1}}^{ij}=\phi _{m_{q}}^{ij},\ {\mathrm{for}}\ 1\le q\le M. \end{aligned}$$
(33)

With (31) and (33), we have

$$\begin{aligned}&\left[ (\phi _{m_{1}}^{i})^{2}-(\phi _{m_{1}}^{j})^{2}\right] -\left[ (\phi _{m_{q}}^{i})^{2}-(\phi _{m_{q}}^{j})^{2}\right] \nonumber \\&\quad = \phi _{m_{1}}^{ij}(\phi _{m_{1}}^{i}+\phi _{m_{1}}^{j})-\phi _{m_{q}}^{ij}(\phi _{m_{q}}^{i}+\phi _{m_{q}}^{j})\nonumber \\&\quad = \phi _{m_{1}}^{ij}(\phi _{m_{1}}^{i}+\phi _{m_{1}}^{j}-\phi _{m_{q}}^{i}-\phi _{m_{q}}^{j})\nonumber \\&\quad = 2\phi _{m_{1}}^{ij}f_{c}\tau (m_{1}-m_{q}). \end{aligned}$$
(34)

Then, it can be obtained that

$$\begin{aligned}&y_{m_{1}1K}^{ij}-y_{m_{q}1K}^{ij}\nonumber \\&\quad = (m_{1}-m_{q})\left\{ [(\phi _{K}^{i})^{2}-(\phi _{K}^{j})^{2}]-[(\phi _{1}^{i})^{2}-(\phi _{1}^{j})^{2}]\right\} \nonumber \\&\qquad +(1-K)\left\{ [(\phi _{m_{1}}^{i})^{2}-(\phi _{m_{1}}^{j})^{2}]-[(\phi _{m_{q}}^{i})^{2}-(\phi _{m_{q}}^{j})^{2}]\right\} \nonumber \\&\quad = (m_{1}-m_{q})\left\{ [(\phi _{K}^{i})^{2}-(\phi _{K}^{j})^{2}]-[(\phi _{1}^{i})^{2}-(\phi _{1}^{j})^{2}]\right\} \nonumber \\&\qquad +2(m_{1}-m_{q})(1-K)\phi _{m_{1}}^{ij}f_{c}\tau . \end{aligned}$$
(35)

In other words, we have

$$\begin{aligned} \frac{y_{m_{1}1K}^{ij}-y_{m_{2}1K}^{ij}}{m_{1}-m_{2}}=\frac{y_{m_{1}1K}^{ij}-y_{m_{q}1K}^{ij}}{m_{1}-m_{q}},\ {\mathrm{for}}\ 2\le q\le M. \end{aligned}$$
(36)

As a result, if the noise is neglected, the RS-CDS observations \(y_{m_{q}1K}^{ij}\) can be linearly represented by others at the same position and considered to be redundant. In fact, these observations provide no additional geometric diversity.

Appendix B: Expression of the autocovariance matrix

Denote \({\mathbf {Q}}_{kl}={\mathbb {E}}\{{\mathbf {n}}_{k}{\mathbf {n}}_{l}^{\mathrm {T}}\}\)and we have

$$\begin{aligned} {\mathbf {Q}}=&{\mathbb {E}}\{{\mathbf {n}}{\mathbf {n}}^{\mathrm {T}}\}\nonumber \\ =&\begin{bmatrix}{\mathbf {Q}}_{22}&\quad {\mathbf {Q}}_{23}&\quad \cdots&\quad {\mathbf {Q}}_{2(K-1)}\\ {\mathbf {Q}}_{32}&\quad {\mathbf {Q}}_{33}&\quad \cdots&\quad {\mathbf {Q}}_{3(K-1)}\\ \vdots&\quad \vdots&\quad \ddots&\quad \vdots \\ {\mathbf {Q}}_{(K-1)2}&\quad {\mathbf {Q}}_{(K-1)3}&\quad \cdots&\quad {\mathbf {Q}}_{(K-1)(K-1)} \end{bmatrix}. \end{aligned}$$
(37)

The expression is derived with the following assumptions:

  1. 1.

    The measurement noise \(w_{k}^{i}\) and the unmodeled clock error \(e_{k}\) are independent, that is \({\mathbb {E}}\{w_{k}^{i}e_{l}\}=0\).

  2. 2.

    Errors at different epochs are independent. In other words, for \(k\ne l\), we have \({\mathbb {E}}\{w_{k}^{i}w_{l}^{j}\}=0\) and \({\mathbb {E}}\{e_{k}e_{l}\}=0\).

  3. 3.

    The signal noise of different base stations is independent, that is \({\mathbb {E}}\{w_{k}^{i}w_{l}^{j}\}=0\) for \(i\ne j\).

According to (9), we have

$$\begin{aligned} n_{k}^{ij}= & {} \lambda ^{-1}\Vert {\mathbf {s}}_{i}-{\mathbf {u}}_{k}\Vert w_{k}^{i}-\lambda ^{-1}\Vert {\mathbf {s}}_{j}-{\mathbf {u}}_{k}\Vert w_{k}^{j}\nonumber \\&+\,\lambda ^{-1}(\Vert {\mathbf {s}}_{i}-{\mathbf {u}}_{k}\Vert -\Vert {\mathbf {s}}_{j}-{\mathbf {u}}_{k}\Vert )f_{c} e_{k}. \end{aligned}$$
(38)

As can be seen from (38), it is necessary to know the true distances \(\Vert {\mathbf {s}}_{i}-{\mathbf {u}}_{k}\Vert \) to compute the accurate statistical characteristics of noise. However, this is impossible until the positioning procedure is completed. So the following approximation is made to simplify the derivation for all k

$$\begin{aligned} {\mathbb {E}}\left\{ \left( \lambda ^{-1}\Vert {\mathbf {s}}_{i}-{\mathbf {u}}_{k}\Vert w_{k}^{i}\right) ^{2}\right\}&\approx \sigma _{w}^{2} \end{aligned}$$
(39)
$$\begin{aligned} {\mathbb {E}}\left\{ \left[ \lambda ^{-1}(\Vert {\mathbf {s}}_{i}-{\mathbf {u}}_{k}\Vert -\Vert {\mathbf {s}}_{j}-{\mathbf {u}}_{k}\Vert )f_{c}e_{k}\right] ^{2}\right\}&\approx \sigma _{e}^{2},\ {\mathrm{for}}\ i\ne j \end{aligned}$$
(40)

where \(\sigma _{w}^{2}\) and \(\sigma _{e}^{2}\) are approximate estimates. Then, it can be obtained that

$$\begin{aligned} {\mathbb {E}}\left\{ n_{k}^{i1}n_{l}^{j1}\right\} =\delta _{kl}\left( \delta _{ij}\sigma _{w}^{2} +\sigma _{w}^{2}+\sigma _{e}^{2}\right) \end{aligned}$$
(41)

where

$$\begin{aligned} \delta _{ij}={\left\{ \begin{array}{ll} 0, &{} i\ne j\\ 1, &{} i=j \end{array}\right. } \end{aligned}$$
(42)

With (41), we have

$$\begin{aligned}&{\mathbb {E}}\left\{ n_{k1K}^{i1}n_{l1K}^{j1}\right\} \nonumber \\&\quad = [(K-k)(K-l)+(k-1)(l-1)] \left( \delta _{ij}\sigma _{w}^{2}+\sigma _{w}^{2}+\sigma _{e}^{2}\right) \nonumber \\&\qquad +\delta _{kl}\delta _{ij}(1-K)^{2}\sigma _{w}^{2}+\delta _{kl}[(1-K)^{2}+(K-k)^{2}\nonumber \\&\qquad +(k-1)^{2}](\sigma _{w}^{2}+\sigma _{e}^{2}). \end{aligned}$$
(43)

Then, it can be obtained from (43) that

$$\begin{aligned} {\mathbf {Q}}_{kl}=&\, 4[(K-k)(K-l)+(k-1)(l-1)]\nonumber \\&\quad \cdot [\sigma _{w}^{2}{\mathbf {I}}_{L-1}+(\sigma _{w}^{2}+\sigma _{e}^{2}){\mathbf {1}}_{L-1}{\mathbf {1}}_{L-1}^{\mathrm {T}}]\nonumber \\&\quad +4\delta _{kl}(1-K)^{2}\sigma _{w}^{2}{\mathbf {I}}_{L-1}+4\delta _{kl}[(1-K)^{2}\nonumber \\&\quad +(K-k)^{2}+(k-1)^{2}](\sigma _{w}^{2}+\sigma _{e}^{2}){\mathbf {1}}_{L-1}{\mathbf {1}}_{L-1}^{\mathrm {T}} \end{aligned}$$
(44)

where \({\mathbf {I}}_{L-1}\) represents an \(L-1\) dimensional identity matrix, and \({\mathbf {1}}_{L-1}\) denotes a column vector of \(L-1\) elements that are all one.

By substituting (44) into (37), the approximate expression of \({\mathbf {Q}}\) can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Yao, Z. & Lu, M. Combined difference square observation-based ambiguity determination for ground-based positioning system. J Geod 93, 1867–1880 (2019). https://doi.org/10.1007/s00190-019-01288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01288-0

Keywords

Navigation