[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Reference frame stability and nonlinear distortion in minimum-constrained network adjustment

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate the influence of the minimum constraints (MCs) on the reference frame parameters in a free-net solution. The non-estimable part of these parameters (which is not reduced by the available data) is analysed in terms of its stability under a numerical perturbation of the constrained datum functionals. In practice, such a perturbation can be ascribed either to hidden errors in the known coordinates/velocities that participate in the MCs or to a simple change of their a priori values due to a datum switch on a different fiducial dataset. In addition, a perturbation of this type may cause a nonlinear variation to the estimable part of the reference frame parameters, since it theoretically affects the adjusted observations that are implied by the network’s nonlinear observational model. The aforementioned effects have an impact on the quality of a terrestrial reference frame (TRF) that is established via a minimum-constrained adjustment, and our study shows that they are both controlled through a characteristic matrix which is inherently linked to the MC system (the so-called TRF stability matrix). The structure of this matrix depends on the network’s spatial configuration and the ‘geometry’ of the datum constraints, while its main role is the filtering of any MC-related errors into the least-squares adjustment results. A number of examples with different types of geodetic networks are also presented to demonstrate the theoretical findings of our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002a) ITRF2000: A new release of the international terrestrial reference frame for earth science applications. J Geophys Res (Solid Earth) 107(10): 1–19

    Article  Google Scholar 

  • Altamimi Z, Boucher C, Sillard P (2002b) New trends for the realization of the International Terrestrial Reference System. Adv Space Res 30(2): 175–184

    Article  Google Scholar 

  • Altamimi Z, Dermanis A (2009) The choice of reference system in ITRF formulation. IAG Symposia, vol 137. Springer, Berlin, pp 329–334

    Google Scholar 

  • Baarda W (1973) S-transformations and criterion matrices. Netherlands Geodetic Commission. Publications on Geodesy, New Series 5(1)

  • Blaha G (1971a) Inner adjustment constraints with emphasis on range observations. Department of Geodetic Science, The Ohio State University, OSU Report No. 148, Columbus

  • Blaha G (1971b) Investigations of critical configurations for fundamental range networks. Department of Geodetic Science, The Ohio State University, OSU Report No. 150, Columbus

  • Blaha G (1982) A note on adjustment of free networks. Bull Geod 56: 281–299

    Article  Google Scholar 

  • Blaha G (1982) Free networks: minimum norm solution as obtained by the inner adjustment constraint method. Bull Geod 56: 209–219

    Article  Google Scholar 

  • Coulot D, Pollet A, Collilieux X, Berio P (2010) Global optimization of core station networks for space geodesy: application to the referencing of the SLR EOP with respect to ITRF. J Geod 84: 31–50

    Article  Google Scholar 

  • Delikaraoglou D (1985) Estimability analyses of the free networks of differential range observations to GPS satellites. In: Grafarend EW, Sanso F (eds) Optimization and design of geodetic networks. Springer, Berlin, pp 196–220

    Chapter  Google Scholar 

  • Dermanis A (1985) Optimization problems in geodetic networks with signals. In: Grafarend EW, Sanso F (eds) Optimization and design of geodetic networks. Springer, Berlin, pp 221–256

    Chapter  Google Scholar 

  • Dermanis A (1994) The photogrammetric inner constraints. ISPRS J Photogramm Remote Sens 49: 25–39

    Article  Google Scholar 

  • Dermanis A (1998) Generalized inverses of nonlinear mappings and the nonlinear geodetic datum problem. J Geod 72: 71–100

    Article  Google Scholar 

  • Grafarend EW (1974) Optimization of geodetic networks. Boll Geod Sci Affi XXXIII: 351–406

    Google Scholar 

  • Grafarend EW, Schaffrin B (1974) Unbiased free net adjustment. Surv Rev XXII(171): 200–218

    Article  Google Scholar 

  • Grafarend EW, Schaffrin B (1976) Equivalence of estimable quantities and invariants in geodetic networks. ZfV 101: 485–491

    Google Scholar 

  • Grafarend EW, Livieratos E (1978) Rank defect analysis of satellite geodetic networks (geometric and semi-dynamic mode). Manuscr Geod 3: 107–134

    Google Scholar 

  • Han J-Y, van Gelder BHW (2006) Stepwise parameter estimations in a time-variant similarity transformation. J Surv Eng 132(4): 141–148

    Article  Google Scholar 

  • Heinkelmann R, Boehm J, Schuh H (2007) Effects of geodetic datum definition on the celestial and terrestrial reference frames determined by VLBI. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for Geodesy and Astrometry Working Meeting. Technische Universität Wien, Heft Nr 79, pp 200–205

    Google Scholar 

  • IVS (2011)ftp://cddis.gsfc.nasa.gov/vlbi/ivsproducts/trf

  • Koch K-R (1985) Ein statistischen Auswerteverfahren fur Deformationsmessungen. AVN 92: 97–108

    Google Scholar 

  • Koch K-R (1999) Parameter estimation and hypothesis testing in linear models, 2nd edition. Springer, Berlin

    Google Scholar 

  • Leick A, van Gelder BHW (1975) On similarity transformations and geodetic network distortions based on Doppler satellite observations. Department of Geodetic Science, The Ohio State University, OSU Report No. 235, Columbus

  • Meissl P (1969) Zusammengfassung und Ausbau der inneren Fehlertheoric eines Punkthaufens. Deutsche Geodätische Kommission Reihe A 61: 8–21

    Google Scholar 

  • Papo HB (1986) Extended free net adjustment constraints. NOAA Technical Report, NOS 119 NGS 37, Rockville

  • Papo HB (1987) Bases of null-space in analytical photogrammetry. Photogrammetria 41: 233–244

    Article  Google Scholar 

  • Papo HB, Perelmuter A (1981) Datum definition by free net adjustment. Bull Geod 55: 218–226

    Article  Google Scholar 

  • Perelmuter A (1979) Adjustment of free networks. Bull Geod 53: 291–296

    Article  Google Scholar 

  • Schaffrin B (1985) Aspects of network design. In: Grafarend EW, Sanso F (eds) Optimization and design of geodetic networks. Springer, Berlin, pp 549–597

    Google Scholar 

  • Schlüter W, Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81: 379–387

    Article  Google Scholar 

  • Sillard P, Boucher C (2001) A review of algebraic constraints in terrestrial reference frame datum definition. J Geod 75: 63–73

    Article  Google Scholar 

  • Soler T, Marshall J (2003) A note on frame transformations with applications to geodetic datums. GPS Solut 7(1): 23–32

    Google Scholar 

  • Strang van Hees GL (1982) Variance–covariance transformation of geodetic networks. Manuscr Geod 7: 1–20

    Google Scholar 

  • Teunissen P (1985) Zero order design: generalized inverse, adjustment, the datum problem and S-transformations. In: Grafarend EW, Sanso F (eds) Optimization and design of geodetic networks. Springer, Berlin, pp 11–55

    Chapter  Google Scholar 

  • Tsimis E (1973) Critical configurations for range and range-difference satellite networks. Department of Geodetic Science, The Ohio State University, OSU Report No. 191, Columbus

  • van Mierlo J (1980) Free network adjustment and S-transformations. Deutsche Geodätische Kommission Reihe B 252: 41–54

    Google Scholar 

  • Veis G (1960) Geodetic uses of artificial satellites. Smithsonian contributions to Astrophysics 3(9)

  • Wolf H (1973) Die Helmert-Inverse bei freien geodatischen Netzen. ZfV 98: 396–398

    Google Scholar 

  • Xu P (1995) Testing the hypotheses of non-estimable functions in free net adjustment models. Manuscr Geod 20: 73–81

    Google Scholar 

  • Xu P (1997) A general solution in geodetic nonlinear rank-defect models. Boll Geod Sci Affi LVI(1): 1–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kotsakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsakis, C. Reference frame stability and nonlinear distortion in minimum-constrained network adjustment. J Geod 86, 755–774 (2012). https://doi.org/10.1007/s00190-012-0555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-012-0555-6

Keywords

Navigation