[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multivariate Local Fitting with General Basis Functions

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

In this paper we combine the concepts of local smoothing and fitting with basis functions for multivariate predictor variables. We start with arbitrary basis functions and show that the asymptotic variance at interior points is independent of the choice of the basis. Moreover we calculate the asymptotic variance at boundary points. We are not able to compute the asymptotic bias since a Taylor theorem for arbitrary basis functions does not exist. For this reason we focus on basis functions without interactions and derive a Taylor theorem which covers this case. This theorem enables us to calculate the asymptotic bias for interior as well as for boundary points. We demonstrate how advantage can be taken of the idea of local fitting with general basis functions by means of a simulated data set, and also provide a data-driven tool to optimize the basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

Download references

Acknowledgements

The author is grateful to Gerhard Tutz (LMU, Dep. of Statistics) for helpful inspirations during this work, Daniel Rost (LMU, Math. Inst.) for contributions concerning the extendibility of Taylor’s theorem and to the referees for many suggestions which improved this paper. This work was finished while the author passed a term at the University São Paulo. Many thanks especially to Carmen D. S. de André and Júlio M. Singer (USP) for their support in various fields.

Parts of this work were presented and discussed at the Euroworkshop on Statististical Modelling (2001). There a variety of valuable comments and suggestions were given that enhanced the paper.

Author information

Authors and Affiliations

Authors

Appendices

Appendix

A Regularity conditions

  • (A1) The kernel K is bounded with compact support, ∫ uuTK(u)du = μ2Id, where μ2 is a scalar and Id the d × d identity matrix. In addition, all odd-order moments of K vanish, i.e. \(\int {u_1^{{l_1}}\; \cdots \;u_d^{{l_d}}K\left( u \right)du = 0} \) for all nonnegative integers l1, …, ld with an odd sum.

  • (A2) The point x is ∈ supp(f). At x, σ2 is continuous, f is continuously differentiable and all second-order derivatives of m are continuous. Further f(x) > 0, σ2(x) > 0.

  • (A3) The sequence of bandwidth matrices H1/2 is such that n−1H−1/2 and each entry of H tends to zero as n → ∞.

  • (A4) For a boundary point x, there exists a value on the boundary of supp(f) with x = xb + H1/2c, where c is a fixed element of supp(K), and a convex set \({\cal C}\) with nonnull interior containing xb, such that \(x \in {\cal C}\).

    (A5) At x, all basis functions are continuously differentiable (for variance expressions in Theorem 1,3,4) resp. twice continuously differentiable (for bias expressions in Theorem 3 and 4). In either case, the point x is non-singular for all basis functions, i.e. ∇φj(x) ≠ 0 for j = 1, …, q.

For explanations and interpretations of conditions (Al) to (A4) see Ruppert & Wand (1994).

B Proofs

B.1 Proof of Theorem 1

Let 1 be a matrix of appropriate dimension having only entries equal to 1, further let

$${A_H} = \left( {\begin{array}{*{20}c} 1 \; 0 \\ 0 \; {{H^{1/2}}} \\ \end{array} } \right)\quad \in \;{\mathbb{R} ^{d + 1,d + 1}},\quad {\rm{and}}\;{A_1} = \,\left( {\begin{array}{*{20}c} 1 \; 0 \\ 0 \; 1 \\ \end{array} } \right)\quad \in \;{\mathbb{R} ^{d + 1,q + 1}}.$$

Note that for any u ∈ ℝd

$${\bf{\Phi }}\left( {x + {H^{1/2}}u} \right) - {\bf{\Phi }}\left( x \right) = {D_x}{H^{1/2}}u + o\left( {{H^{1/2}}1} \right)$$

holds. Let \({C_{x,H}} = \left\{ {t:{H^{ - 1/2}}\left( {t - x} \right) \in {{\cal D}_{x,H}}} \right\}\). For interior and boundary points we derive

$$\begin{array}{l}\; {X_{x}^{T} W_{x}} {X_{x}=} \\\;\quad {=} {\sum\limits_{i=1}^{n} K_{H}\left(X_{i}-x\right)\left(\begin{array}{cc}{1} \; {\left(\Phi\left(X_{i}\right)-\Phi(x)\right)^{T}} \\{\Phi\left(X_{i}\right)-\Phi(x)} \; {\left(\Phi\left(X_{i}\right)-\Phi(x)\right)\left(\Phi\left(X_{i}\right)-\Phi(x)\right)^{T}}\end{array}\right)} \\\;\quad {=} {n \int\nolimits_{C_{x, H}} K_{H}(t-x)\left(\begin{array}{cc}{1} \; {(\Phi(t)-\Phi(x))^{T}} \\ {\Phi(t)-\Phi(x)} \; {(\Phi(t)-\Phi(x))(\Phi(t)-\Phi(x))^{T}}\end{array}\right) f(t) d t} \\ \;\qquad {} {+n o_{P}\left(A_{1}^{T} A_{H} \mathbf{1} A_{H} A_{1}\right)} \\\;\quad {=} {n f(x) \int_{\mathcal{D}_{x, H}} K(u)\left(\begin{array}{cc}{1} \; {u^{T}H^{1/2}D_{x}}\\ {D_{x}^{T} H^{1 / 2} u} \; {D_{x}^{T} H^{1 / 2} u u^{T} H^{1 / 2} D_{x}}\end{array}\right) d u} \\\;\qquad {} {+n o_{P}\left(A_{1}^{T} A_{H} \mathbf{1} A_{H} A_{1}\right)}\end{array}$$
(18)
$$\quad = \quad nf\left( x \right)\left( {A_{{D_x}}^T\;{A_H}{M_x}{A_H}{A_{{D_x}}} + \;{o_P}\left( {A_1^T\;{A_H}1{A_H}{A_1}} \right)} \right),\;$$
(19)

and analogously

$$X_x^T{{\rm{\Sigma }}_x}{X_x} = n{\left| H \right|^{ - 1/2}}f\left( x \right){\sigma ^2}\left( x \right)\left( {A_{{D_x}}^T{A_H}{N_x}{A_H}{A_{{D_x}}} + {o_P}\left( {A_1^T{A_H}1{A_H}{A_1}} \right)} \right).$$
(20)

Substituting (19) and (20) into (6) leads to (8). In the special case of an interior point we have \({M_x} = \left( {\begin{array}{*{20}c} 1 \; 0 \\ 0 \; {{\mu _2}{{\bf{I}}_d}} \\ \end{array} } \right)\) and \({N_x} = \,\left( {\begin{array}{*{20}c} {{\nu _0}} \; 0 \\ 0 \; {\int u{u^T}\;{K^2}\left( u \right)du} \\ \end{array} } \right)\). Thus (8) reduces to

$${\rm{Var}}\left( {\hat m\left( x \right)|\mathbb{X}} \right)\; = \;{{{\sigma ^2}\left( x \right)} \over {nf\left( x \right)}}{\left| H \right|^{ - 1/2}}e_1^T{N_x}{e_1}\left( {1 + {o_P}\left( 1 \right)} \right)\; = $$
(21)
$$ = \;{{{\sigma ^2}\left( x \right)} \over {nf\left( x \right)}}{\left| H \right|^{ - 1/2}}{\nu _0}\left( {1 + {o_P}\left( 1 \right)} \right).$$
(22)

B.2 Proof of Theorem 2

We introduce the function M : [0, 1] → ℝ,

$$M\left( t \right) = m\left( {{y_{\rm{\Phi }}}\left( t \right)} \right) = m\left( {{{\rm{\Phi }}^{ - 1}}\left[ {{\rm{\Phi }}\left( x \right) + t\left( {{\rm{\Phi }}\left( z \right) - {\rm{\Phi }}\left( x \right)} \right)} \right]} \right).$$

Then we have M(0) = m(x) and M(1) = m(z). We apply the univariate Taylor theorem on the function MCp+1([0,1]) and obtain

$$M\left( 1 \right) = M\left( 0 \right) + M\prime\left( 0 \right) + {1 \over {2!}}M\prime\prime\left( 0 \right) + \; \ldots + \,{1 \over {p!}}{M^{(p)}}\left( 0 \right) + {r_{p + 1}},$$
(23)

where

$${r_{p + 1}} = {1 \over {\left( {p + 1} \right)!}}{M^{\left( {p + 1} \right)}}\left( \tau \right)\quad \left( {\tau \in \left[ {0,1} \right]} \right).$$

Using the Inverse Function Theorem we obtain

$$y_{\rm{\Phi }}^\prime \left( t \right) = {\left[ {{1 \over {\phi _i^\prime \left( {{y_{\rm{\Phi }}}{{\left( t \right)}_{\left( i \right)}}} \right)}}\left( {{\phi _i}\left( {{z_i}} \right) - {\phi _i}\left( {{x_i}} \right)} \right)} \right]_{\left( {1 \le i \le n} \right)}}$$

Repeated application of the chain rule on M = myΦ leads to

$$\begin{array}{rcl}\;\;\;\;\;\;\;\;\;\;\;\;\;\; M^{\prime}(t) \;= \;\nabla m\left(y_{\Phi}(t)\right) \cdot y_{\Phi}^{\prime}(t)=\left[\left((\Phi(z)-\Phi(x)) \cdot \nabla_{\Phi}\right) m\right]\left(y_{\Phi}(t)\right) \\ M^{\prime \prime}(t) \;= \;\left[\left((\Phi(z)-\Phi(x)) \cdot \nabla_{\Phi}\right)^{2} m\right]\left(y_{\Phi}(t)\right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \\ \; \vdots\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \; \\ M^{(n)}(t)\;= \;\left[\left((\Phi(z)-\Phi(x)) \cdot \nabla_{\Phi}\right)^{n} m\right]\left(y_{\Phi}(t)\right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \end{array}$$

Applying the latter formulas in (23) and substituting ζ = yΦ(τ) proves the allegation.

B.3 Proof of Theorem 3

The proof is kept shortly since it follows mainly the ideas of the corresponding proof for multivariate local linear fitting, see Ruppert & Wand (1994).

Asymptotic Bias

First note that, applying (10), we have

$$m=X_{x}\left(\begin{array}{c}{m(x)} \\ {P_{x}^{-1} \nabla m(x)}\end{array}\right)+\frac{1}{2} Q_{m}(x)+S_{m}(x)$$
(24)

with

$$Q_{m}(x)=\left[\left(\Phi\left(X_{i}\right)-\Phi(x)\right)^{T} P_{x}^{-1} N_{m}(x) P_{x}^{-1}\left(\Phi\left(X_{i}\right)-\Phi(x)\right)\right]_{1 \leq i \leq n}$$

and Sm(x) = o(Qm(x)). Plugging (24) into (5) shows that

$$\operatorname{Bias}(\hat{m}(x) | \mathbb{X})=\frac{1}{2} e_{1}^{T}\left(X_{x}^{T} W_{x} X_{x}\right)^{-1} X_{x}^{T} W_{x} Q_{m}(x)(1+o(1)).$$
(25)

Let Wi = KH(Xix). Using matrix algebra (see e.g. Fahrmeir & Hamerle (1984)) we derive

$$\begin{array}{l}\;{\left(X_{x}^{T} W_{x} X_{x}\right)^{-1}=} \\\;\ \ =\ \ \left(\begin{array}{cc}{\sum w_{i}} \; {\sum w_{i}\left(\Phi\left(X_{i}\right)-\Phi(x)\right)^{T}} \\ {\sum w_{i}\left(\Phi\left(X_{i}\right)-\Phi(x)\right)} \; {\sum w_{i}\left(\Phi\left(X_{i}\right)-\Phi(x)\right)\left(\Phi\left(X_{i}\right)-\Phi(x)\right)^{T}}\end{array}\right)^{-1}\\\;\ \ =\ \ n\left(\begin{array}{cc}{f(x)+o_{P}(1)} \; {o_{P}\left(\mathbf{1}^{T} H^{1 / 2}\right)} \\ {o_{P}\left(H^{1 / 2} \mathbf{1}\right)} \; {\mu_{2} P_{x} H P_{x} f(x)+o_{P}(H)}\end{array}\right)^{-1}\\\;\ \ =\ \ \frac{1}{n}\left(\begin{array}{cc}{\frac{1}{f(x)}+o_{P}(1)} \; {o_{P}\left(\mathbf{1}^{T} H^{-1 / 2}\right)} \\ {o_{P}\left(H^{-1 / 2} \mathbf{1}\right)} \; {\frac{1}{\mu_{2} f(x)} P_{x}^{-1} H^{-1} P_{x}^{-1}+o_{P}\left(H^{-1}\right)}\end{array}\right)\end{array}$$
(26)

and

$$X_{x}^{T} W_{x} Q_{m}(x)=n\left(\begin{array}{c}{\mu_{2} f(x) \operatorname{tr}\left\{H N_{m}(x)\right\}+o_{P}(\operatorname{tr}(H))} \\ {O_{P}\left(H^{3 / 2} \mathbf{1}\right)}\end{array}\right)$$
(27)

so that substituting (26) and (27) into (25) proves (11).

Asymptotic variance

Similar like above we obtain

$$\begin{array}{l}{X_{x}^{T} \Sigma_{x} X_{x}=} \\{\quad=\sum w_{i}^{2} \sigma^{2}\left(X_{i}\right)\left(\begin{array}{cc}{1} \; {\left(\Phi\left(X_{i}\right)-\Phi(x)\right)^{T}} \\ {\left(\Phi\left(X_{i}\right)-\Phi(x)\right)} \; {\left(\Phi\left(X_{i}\right)-\Phi(x)\right)\left(\Phi\left(X_{i}\right)-\Phi(x)\right)^{T}}\end{array}\right)}\\\quad=n|H|^{-1 / 2}\left(\begin{array}{cc}{\nu_{0} \sigma^{2}(x) f(x)+o_{P}(1)} \; {\mathbf{1}^{T} H^{1 / 2}\left(1+o_{P}(1)\right)} \\ {H^{1 / 2} \mathbf{1}\left(1+o_{P}(1)\right)} \; {G(x, H)+o_{P}(H)}\end{array}\right),\end{array}$$

where

$$G(x, H)=\left(\int K^{2}(u) u u^{T} d u\right) P_{x} H P_{x} \sigma^{2}(x) f(x).$$

Plugging this result and (26) into (6) leads to (12).

B.4 Proof of Theorem 4

Let

$$A_{H}=\left(\begin{array}{cc}{1} \; {0} \\ {0} \; {H^{1 / 2}}\end{array}\right), \quad A_{P_{x}}=\left(\begin{array}{cc}{1} \; {0} \\ {0} \; {P_{x}}\end{array}\right)$$

Asymptotic bias

Note that

$$\begin{array}{l}\;{X_{x}^{T} W_{x}} {X_{z}=} \\\;\ \ {=}\ \ {n \int_{C_{x}, H} K_{H}(t-x)\left(\begin{array}{cc}{1} \; {(\Phi(t)-\Phi(x))^{T}} \\ {(\Phi(t)-\Phi(x))} \; {(\Phi(t)-\Phi(x))(\Phi(t)-\Phi(x))^{T}}\end{array}\right) f(t) d t} \\\;\quad\ \ {} {+n o_{p}\left(A_{H} \mathbf{1} A_{H}\right)} \\\;\ \ {=}\ \ {n f(x)\left(A_{P_{x}} A_{H} M_{x} A_{H} A_{P_{x}}+o_{P}\left(A_{H} \mathbf{1} A_{H}\right)\right)},\end{array}$$
(28)

where Cx,h was defined in the proof of Theorem 1. Using the first step in (27),

$$\begin{array}{l}\;{X_{x}^{T} W_{x} Q_{m}(x)=}\\\;\ \ =\ \ n f(x)\left(\begin{array}{c}{\int\nolimits_{\mathcal{D}_{x, H}} K(u) u^{T} H^{1 / 2} N_{m}(x) H^{1 / 2} u d u} \\ {P_{x} H^{1 / 2} \int\nolimits_{\mathcal{D}_{x, H}} u K(u)\left\{u^{T} H^{1 / 2} N_{m}(x) H^{1 / 2} u\right\} d u}\end{array}\right)\\\;\ \ +\ \ o_{P}\left(\begin{array}{c}{n \operatorname{tr}(H)} \\ {n H^{1 / 2} \mathbf{1} \operatorname{tr}(\mathbf{H})}\end{array}\right)\end{array}$$
(29)

holds. Assuming (A4), Mx is nonsingular and we have

$$M_{x}^{-1}=\left(\begin{array}{cc}{\mu_{x}^{11}} \; {\mu_{x}^{12}} \\ {\mu_{x}^{21}} \; {\mu_{x}^{22}}\end{array}\right),$$

where \(\mu_{x}^{11}=\left(\mu_{x, 11}-\mu_{x, 12} \mu_{x, 22}^{-1} \mu_{x, 21}\right)^{-1}, \mu_{x}^{12}=-\left(\mu_{x, 12} / \mu_{x, 11}\right) \mu_{x}^{22}\)and \(\mu_{x}^{22}=\left(\mu_{x, 22}-\mu_{x, 21} \mu_{x, 12} / \mu_{x, 11}\right)^{-1}\). Then substituting (28) and (29) into (25) and noticing that

$$e_{1}^{T} A_{P_{x}}^{-1} A_{H}^{-1} M_{x}^{-1} A_{H}^{-1} A_{P_{x}}^{-1}=\left(\begin{array}{cc}{\mu_{x}^{11}} \; {\mu_{x}^{12} P_{x}^{-1} H^{-1 / 2}}\end{array}\right)$$

yields formula (14).

Asymptotic variance

Similar considerations like in (28) lead to

$$X_{x}^{T} W_{x}^{2} X_{x}=n f(x)|H|^{-1 / 2}\left(A_{P_{x}} A_{H} N_{x} A_{H} A_{P_{x}}+o_{P}\left(A_{H} \mathbf{1} A_{H}\right)\right).$$
(30)

With (6), (28) and (30) we get

$$\begin{array}{l}{\operatorname{Var}(\hat{m}(x) | \mathbb{X})=} \\ {\quad=e_{1}^{T}\left(X_{x}^{T} W_{x} X_{x}\right)^{-1}\left(X_{x}^{T} W_{x}^{2} X_{x}\right)\left(X_{x}^{T} W_{x} X_{x}\right)^{-1} e_{1}\left(\sigma^{2}(x)+o_{P}(1)\right)} \\ {\quad=\frac{\sigma^{2}(x)}{n f(x)}|H|^{-1 / 2}\left(e_{1}^{T} M_{x}^{-1} N_{x} M_{x}^{-1} e_{1}+o_{P}(1)\right)},\end{array}$$

what had to be proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Einbeck, J. Multivariate Local Fitting with General Basis Functions. Computational Statistics 18, 185–203 (2003). https://doi.org/10.1007/s001800300140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800300140

Key Words