[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multiple combined gamma kernel estimations for nonnegative data with Bayesian adaptive bandwidths

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The modified (or second version) gamma kernel of Chen [Probability density function estimation using gamma kernels, Annals of the Institute of Statistical Mathematics 52 (2000), pp. 471–480] should not be automatically preferred to the standard (or first version) gamma kernel, especially for univariate convex densities with a pole at the origin. In the multivariate case, multiple combined gamma kernels, defined as a product of univariate standard and modified ones, are here introduced for nonparametric and semiparametric smoothing of unknown orthant densities with support \([0,\infty )^d\). Asymptotical properties of these multivariate associated kernel estimators are established. Bayesian estimation of adaptive bandwidth vectors using multiple pure combined gamma smoothers, and in semiparametric setup, are exactly derived under the usual quadratic function. The simulation results and four illustrations on real datasets reveal very interesting advantages of the proposed combined approach for nonparametric smoothing, compare to both pure standard and pure modified gamma kernel versions, and under integrated squared error and average log-likelihood criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arshad MZ, Iqbal MZ, Al Mutairi A (2021) A comprehensive review of datasets for statistical research in probability and quality control. J Math Comput Sci 11:3663–3728

    Google Scholar 

  • Azzalini A, Bowman AW (1990) A look at some data on the old faithful geyser. J Roy Statist Soc Ser C 39:357–365

    Google Scholar 

  • Belaid N, Adjabi S, Kokonendji CC, Zougab N (2016) Bayesian local bandwidth selector in multivariate associated kernel estimator for joint probability mass functions. J Statist Comput Simul 86:3667–3681

    MathSciNet  Google Scholar 

  • Belaid N, Adjabi S, Kokonendji CC, Zougab N (2018) Bayesian adaptive bandwidth selector for multivariate discrete kernel estimator. Commun Statist Theor Methods 47:2988–3001

    MathSciNet  Google Scholar 

  • Bouezmarni T, Rombouts JV (2010) Nonparametric density estimation for multivariate bounded data. J Statist Plann Inference 140:139–152

    MathSciNet  Google Scholar 

  • Brewer MJ (2000) A Bayesian model for local smoothing in kernel density estimation. Statist Comput 10:299–309

    Google Scholar 

  • Chen SX (1999) A beta kernel estimation for density functions. Comput Statist Data Anal 31:131–145

    MathSciNet  Google Scholar 

  • Chen SX (2000) Probability density function estimation using gamma kernels. Ann Inst Statist Math 52:471–480

    MathSciNet  Google Scholar 

  • Duong T, Hazelton ML (2005) Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation. J Multiv Anal 93:417–433

    MathSciNet  Google Scholar 

  • Erçelik E, Nadar N (2021) A new kernel estimator based on scaled inverse Chi-squared density function. Amer J Math Manag Sci 40:306–319

    Google Scholar 

  • Filippone M, Sanguinetti G (2011) Approximate inference of the bandwidth in multivariate kernel density estimation. Comput Statist Data Anal 55:3104–3122

    MathSciNet  Google Scholar 

  • Funke B, Kawka R (2015) Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods. Comput Statist Data Anal 92:148–162

    MathSciNet  Google Scholar 

  • Harfouche L, Zougab N, Adjabi S (2020) Multivariate generalised gamma kernel density estimators and application to non-negative data. Intern J Comput Sci Math 11:137–157

    MathSciNet  Google Scholar 

  • Hirukawa M, Sakudo M (2014) Nonnegative bias reduction methods for density estimation using asymmetric kernels. Comput Statist Data Anal 75:112–123

    MathSciNet  Google Scholar 

  • Hirukawa M, Sakudo M (2015) Family of the generalised gamma kernels: a generator of asymmetric kernels for nonnegative data. J Nonparametr Statist 27:41–63

    MathSciNet  Google Scholar 

  • Hjort NL, Glad IK (1995) Nonparametric density estimation with a parametric start. Ann Statist 23:882–904

    MathSciNet  Google Scholar 

  • Igarashi G, Kakizawa Y (2014) Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum-Saunders kernel estimators. Statist Probab Lett 84:235–246

    MathSciNet  Google Scholar 

  • Igarashi G, Kakizawa Y (2015) Bias correction for some asymmetric kernel estimators. J Statist Plann Inference 159:37–63

    MathSciNet  Google Scholar 

  • Jin X, Kawczak J (2003) Birnbaum-Saunders and lognormal kernel estimators for modelling durations in high frequency financial data. Ann Econ Finance 4:103–124

    Google Scholar 

  • Kakizawa Y (2022) Multivariate elliptical-based Birnbaum-Saunders kernel density estimation for nonnegative data. J Multiv Anal 187:104834

    MathSciNet  Google Scholar 

  • Kokonendji CC, Puig P (2018) Fisher dispersion index for multivariate count distributions: a review and a new proposal. J Multiv Anal 165:180–193

    MathSciNet  Google Scholar 

  • Kokonendji CC, Senga Kiessé T, Balakrishnan N (2009) Semiparametric estimation for count data through weighted distributions. J Statist Plann Inference 139:3625–3638

    MathSciNet  Google Scholar 

  • Kokonendji CC, Somé SM (2018) On multivariate associated kernels to estimate general density functions. J Korean Statist Soc 47(2018):112–126

    MathSciNet  Google Scholar 

  • Kokonendji CC, Somé SM (2021) Bayesian bandwidths in semiparametric modelling for nonnegative orthant data with diagnostics. Stats 4:162–183

    Google Scholar 

  • Kokonendji CC, Touré AY, Sawadogo A (2020) Relative variation indexes for multivariate continuous distributions on \([0,\infty )^k\) and extensions. AStA Adv Statist Anal 104:285–307

    MathSciNet  Google Scholar 

  • Libengué Dobélé-Kpoka FGB, Kokonendji CC (2017) The mode-dispersion approach for constructing continuous associated kernels. Afr Statist 12:1417–1446

    MathSciNet  Google Scholar 

  • Malec P, Schienle M (2014) Nonparametric kernel density estimation near the boundary. Comput Statist Data Anal 72:57–76

    MathSciNet  Google Scholar 

  • Marchant C, Bertin K, Leiva V, Saulo H (2013) Generalized Birnbaum-Saunders kernel density estimators and an analysis of financial data. Comput Statist Data Anal 63:1–15

    MathSciNet  Google Scholar 

  • Michele DN, Padgett WJ (2006) A bootstrap control chart for Weibull percentiles. Qual Reliab Engng Int 22:141–151

    Google Scholar 

  • Nadarajah S, Kotz S (2007) On the alternative to the Weibull function. Eng Frac Mech 74:577–579

    Google Scholar 

  • Ouimet F, Tolosana-Delgado R (2022) Asymptotic properties of Dirichlet kernel density estimators. J Multiv Anal 187:104832

    MathSciNet  Google Scholar 

  • R Core Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria (2021). Available online: http://cran.r-project.org/

  • Sain SR (2002) Multivariate locally adaptive density estimation. Comput Statist Data Anal 39:165–186

    ADS  MathSciNet  Google Scholar 

  • Scaillet O (2004) Density estimation using inverse and reciprocal inverse Gaussian kernels. J Nonparametr Statist 16:217–226

    MathSciNet  Google Scholar 

  • Senga T, Kiéssé T, Mizère D (2004) Density estimation using inverse and reciprocal inverse Gaussian kernels. J Nonparametr Statist 16:217–226

  • Somé SM (2022) Bayesian selector of adaptive bandwidth for gamma kernel density estimator on \([0,\infty )\). Statist Simul Comput press Commun https://doi.org/10.1080/03610918.2020.1828921

  • Somé SM, Kokonendji CC (2022) Bayesian selector of adaptive bandwidth for multivariate gamma kernel estimator on \([0,\infty )^d\). J Appl Statist 49:1692–1713

    MathSciNet  Google Scholar 

  • Touré AY, Dossou-Gbété S, Kokonendji CC (2020) Asymptotic normality of the test statistics for the unified relative dispersion and relative variation indexes. J Appl Statist 47:2479–2491

    MathSciNet  Google Scholar 

  • Zhang X, King ML, Hyndman RJ (2006) A Bayesian approach to bandwidth selection for multivariate kernel density estimation. Comput Statist Data Anal 50:3009–3031

    MathSciNet  Google Scholar 

  • Zhang S (2010) A note on the performance of the gamma kernel estimators at the boundary. Statist Probab Lett 80:548–557

    MathSciNet  Google Scholar 

  • Ziane Y, Zougab N, Adjabi S (2015) Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data. J Appl Statist 42:1645–1658

    MathSciNet  Google Scholar 

  • Ziane Y, Zougab N, Adjabi S (2018) Birnbaum-Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data. Comput Statist 33:299–318

    MathSciNet  Google Scholar 

  • Zougab N, Adjabi S, Kokonendji CC (2014) Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation. Comput Statist Data Anal 75:28–38

    MathSciNet  Google Scholar 

  • Zougab N, Harfouche L, Ziane Y, Adjabi S (2018) Multivariate generalized Birnbaum-Saunders kernel density estimators. Commun Statist Theory Methods 47:4534–4555

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are specially grateful to an Associate Editor for his valuable comments that significantly improved the paper. For the second coauthor, this work is supported by the EIPHI Graduate School (contract ANR-17-EURE-0002). The first two authors dedicate this paper to Professor Blaise Somé for his 70th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobom M. Somé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: proofs of propositions

Appendix: proofs of propositions

Proof of Proposition 2

Since one has

$$\begin{aligned} \textrm{Bias}[{\widehat{f}}_n({\varvec{x}})]=p_{d}({\varvec{x}};\widehat{\varvec{\theta }}_n){\mathbb {E}}[{\widehat{w}}_n({\varvec{x}})]-f({\varvec{x}}) \text{ and } \textrm{var}[{\widehat{f}}_n({\varvec{x}})]=[p_{d}({\varvec{x}};\widehat{\varvec{\theta }}_n)]^2 \textrm{var} [{\widehat{w}}_n({\varvec{x}})], \end{aligned}$$

it is enough to calculate \({\mathbb {E}}[{\widehat{w}}_n({\varvec{x}})]\) and \(\textrm{var}[{\widehat{w}}_n({\varvec{x}})]\) using \({\widehat{w}}_n({\varvec{x}})=n^{-1}\sum _{i=1}^n {\textbf{G}}_{{\varvec{x}},{\textbf{h}},\ell }({\textbf{X}}_i)/p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)\) for all \({\varvec{x}}\in {\mathbb {T}}_d^+\) and \({\textbf{G}}_{{\varvec{x}},{\textbf{h}},\ell }=\left( \prod _{s=1}^{d-\ell }G_{x_{s},h_{s}}\right) \left( \prod _{r=1}^{\ell }G_{\rho (x_{r};h_{r}),h_{r}}\right) \) from (6). Indeed, one successively has

$$\begin{aligned} {\mathbb {E}} \left[ {{\widehat{w}}}_n({\varvec{x}})\right]&= {\mathbb {E}}\left[ {\textbf{G}}_{{\varvec{x}},{\textbf{h}},\ell }({\textbf{X}}_{1})/p_{d}({\textbf{X}}_1;\widehat{\varvec{\theta }}_n)\right] \\&=\int _{[0,\infty )^d}{\textbf{G}}_{{\varvec{x}},{\textbf{h}},\ell }({\textbf{u}})\left[ p_{d}({\textbf{u}};\widehat{\varvec{\theta }}_n)\right] ^{-1}f({\textbf{u}})d{\textbf{u}} ={\mathbb {E}}\left[ w\left( {{{\mathcal {G}}}}_{{\varvec{x}},{\textbf{h}},\ell }\right) \right] \\&= w({\varvec{x}})+\left[ \displaystyle \sum _{r=1}^{d-\ell }h_r \frac{\partial w}{\partial x_r}({\varvec{x}})+\displaystyle \sum _{r=1}^{d-\ell }\frac{1}{2}\right. \\&\quad \left. \left( x_r h_r+2h_r^2 \right) \frac{\partial ^2 w}{\partial x_r^2}({\varvec{x}})+\frac{1}{2}\displaystyle \sum _{s=1}^{\ell }x_s h_s \frac{\partial ^2 w}{\partial x_s^2}({\varvec{x}})\right] +\left( 1+o\left\{ \displaystyle \sum _{j=1}^{d}h_j^2 \right\} \right) , \end{aligned}$$

which leads to the result of \(\textrm{Bias}[{\widehat{f}}_n({\varvec{x}})]\).

About the variance term, f being bounded leads to \({\mathbb {E}}\left[ {\textbf{G}}_{{\varvec{x}},{\textbf{h}},\ell }({\textbf{X}}_{j})\right] =O(1)\). Also, we denote by \(\nabla f({\varvec{x}})\) and \({\mathcal {H}}f({\varvec{x}})\) the gradient vector and the corresponding Hessian matrix of the function f at \({\varvec{x}}\), respectively. It successively follows:

$$\begin{aligned} \textrm{var} \left[ {{\widehat{w}}}_n({\varvec{x}})\right]&= \frac{1}{n}\textrm{var}\left[ {\textbf{G}}_{{\varvec{x}},{\textbf{h}},\ell }({\textbf{X}}_{1})/p_{d}({\textbf{X}}_1;\widehat{\varvec{\theta }}_n)\right] \\&=\frac{1}{n}\left[ \int _{[0,\infty )^d}{\textbf{G}}^2_{{\varvec{x}},{\textbf{h}},\ell }({\textbf{u}})[p_{d}({\textbf{u}};\widehat{\varvec{\theta }}_n)]^{-2}f({\textbf{u}})d{\textbf{u}}+O(1)\right] \\&=\frac{1}{n} \int _{[0,\infty )^d}{\textbf{G}}^2_{{\varvec{x}},{\textbf{h}},\ell }({\textbf{u}})[p_{d}({\textbf{u}};\widehat{\varvec{\theta }}_n)]^{-2}\begin{pmatrix}f({\varvec{x}})+({\varvec{x}}-{\textbf{u}})^T\nabla f({\varvec{x}})\\ +\frac{1}{2}({\varvec{x}}-{\textbf{u}})^T{{{\mathcal {H}}}}f({\varvec{x}}) ({\varvec{x}}-{\textbf{u}})\\ +o\left[ \left( ||{\varvec{x}}-{\textbf{u}}||^2\right) \right] \end{pmatrix} d{\textbf{u}}\\&=\frac{1}{n}f({\varvec{x}})[p_{d}({\varvec{x}};\widehat{\varvec{\theta }}_n)]^{-2}||{\textbf{G}}_{{\varvec{x}},{\textbf{h}},\ell }||_2^2++o\left( n^{-1}\displaystyle \prod _{j=1}^{d}h_j^{-1/2}\right) \\&=\frac{1}{n}f({\varvec{x}})[p_{d}({\varvec{x}};\widehat{\varvec{\theta }}_n)]^{-2}\displaystyle \prod _{k=1}^{d-\ell }\left( \frac{\Gamma (1+2x_k/h_k)}{2^{1+2x_k/h_k}\Gamma (1+x_k/h_k)}h_{k}^{-1}\right) \\&\prod _{s \in {\mathbb {I}}^{}_{2}}\left( \frac{\Gamma (1+\lambda _{s}^2/2)}{2^{1+\lambda _{s}^2/2}\Gamma (1+\lambda _{s}^2/4)}h_{s}^{-1}\right) \\&\quad \quad \prod _{j \in {\mathbb {I}}_{2}^c}\left( \frac{1}{2\pi ^{1/2}}h_j^{-1/2}x_j^{-1/2}\right) +o\left( n^{-1}\displaystyle \prod _{j=1}^{d}h_j^{-1/2}\right) \\&=\frac{1}{n}f({\varvec{x}})[p_{d}({\varvec{x}};\widehat{\varvec{\theta }}_n)]^{-2}\displaystyle \prod _{k \in {\mathbb {I}}^{}_{1}}\left( \frac{\Gamma (1+2\lambda _{k})}{2^{1+2\lambda _{k}}\Gamma (1+\lambda _{k})}h_{k}^{-1}\right) \\& \quad \prod _{s \in {\mathbb {I}}^{}_{2}}\left( \frac{\Gamma (1+\lambda _{s}^2/2)}{2^{1+\lambda _{s}^2/2}\Gamma (1+\lambda _{s}^2/4)}h_{s}^{-1}\right) \nonumber \\&\quad \prod _{j \in {\mathbb {I}}_{}^c}\left( \frac{1}{2\pi ^{1/2}}h_j^{-1/2}x_j^{-1/2}\right) +o\left( n^{-1}\displaystyle \prod _{j=1}^{d}h_j^{-1/2}\right) , \end{aligned}$$

and the desired result of \(\textrm{var}[{\widehat{f}}_n({\varvec{x}})]\) is therefore deduced. \(\square \)

Proof of Proposition 3

(i) Let us represent \(\pi ({\textbf{h}}_{i}\mid {\textbf{X}}_{i})\) of (14) as the ratio of \(N({\textbf{h}}_{i}\mid {\textbf{X}}_{i}):={\widehat{f}}_{n,{\textbf{h}}_i,-i}({\textbf{X}}_i) \pi ({\textbf{h}}_{i})\) and \(\int _{[0, \infty )^{d}}N({\textbf{h}}_{i}\mid {\textbf{X}}_{i})d{\textbf{h}}_{i}\). From (13) and (16) the numerator is first equal to

$$\begin{aligned} N({\textbf{h}}_{i}\mid {\textbf{X}}_{i})&= \left( \frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{n-1}\sum _{j=1,j\ne i}^{n} \frac{1}{p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)} \prod _{\ell =1}^{d} G_{\rho (X_{i\ell },h_{i\ell }),h_{i\ell }}(X_{j\ell })\right) \nonumber \\&\quad \left( \prod _{\ell =1}^{d} \frac{\beta _{\ell }^{\alpha }}{\Gamma (\alpha )}h_{i\ell }^{-\alpha -1}\exp (-\beta _{\ell }/h_{i\ell })\right) \nonumber \\&=\frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{(n-1)[\Gamma (\alpha )]^{d}}\sum _{j=1,j\ne i}^{n} \frac{1}{p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)} \nonumber \\&\prod _{\ell =1}^{d} \frac{G_{\rho (X_{i\ell },h_{i\ell }),h_{i\ell }}(X_{j\ell })}{\beta _{\ell }^{-\alpha }h_{i\ell }^{\alpha +1}}\exp (-\beta _{\ell }/h_{i\ell }). \end{aligned}$$
(17)

From (3), consider the following partition \({\mathbb {I}}_{{\textbf{X}}_i}\) and \({\mathbb {I}}_{{\textbf{X}}_i}^{c}\) of \(\{1,2,...,d\}\). For \(X_{ik} \in [0,2h_{ik})\) with \(k\in {\mathbb {I}}_{{\textbf{X}}_i}\), the function \(n\mapsto \left[ X_{ik}/2h_{ik}(n)\right] ^{2}\) is bounded and then there exists a constant \(\lambda _{ik}>0\) such that \((X_{ik}/2h_{ik})^{2} \rightarrow \lambda _{ik}\) as \(n\rightarrow \infty \); see (Chen 2000, pp. 474–475). Using successively (2) and (3) with the behavior \((X_{ik}/2h_{ik})^{2}\simeq \lambda _{ik}\) as \(n\rightarrow \infty \), the term of product on \({\mathbb {I}}_{{\textbf{X}}_i}\) in (17) can be expressed as follows

$$\begin{aligned}&\frac{G_{\rho (X_{ik};h_{ik}),h_{ik}}(X_{jk})}{\beta _{k}^{-\alpha }h_{ik}^{\alpha +1}}\exp (-\beta _{k}/h_{ik})\nonumber \\&\quad =\frac{X_{jk}^{(X_{ik}/2h_{ik})^{2}}\exp (-X_{jk}/h_{ik})}{h_{ik}^{1+(X_{ik}/2h_{ik})^{2}} \Gamma [1+(X_{ik}/2h_{ik})^{2}]\beta _{k}^{-\alpha }h_{ik}^{\alpha +1}}\exp (-\beta _{k}/h_{ik})\nonumber \\&\quad \simeq \frac{X_{jk}^{\lambda _{ik}}\exp [-(X_{jk}+ \beta _{k})/h_{ik}]}{h_{ik}^{\lambda _{ik}+\alpha +2}\beta _{k}^{-\alpha }\Gamma (1+\lambda _{ik})}\nonumber \\&\quad =\frac{ \Gamma (\lambda _{ik}+ \alpha +1) X_{jk}^{\lambda _{ik}}}{\beta _{k}^{-\alpha }\Gamma (\lambda _{ik}+1)(X_{jk}+\beta _{k})^{\lambda _{ik}+\alpha +1}} \times \frac{(X_{jk}+\beta _{k})^{\lambda _{ik}+\alpha +1}\exp [-(X_{jk}+ \beta _{k})/h_{ik}]}{h_{ik}^{\lambda _{ik}+\alpha +2}\Gamma (\lambda _{ik}+\alpha +1)}\nonumber \\&\quad =A_{ijk}\,IG_{\lambda _{ik}+\alpha +1,X_{jk}+ \beta _{k}}(h_{ik}), \end{aligned}$$
(18)

with \(A_{ijk}(\alpha ,\beta _k)= [ \Gamma (\lambda _{ik}+ \alpha +1) X_{jk}^{\lambda _{ik}}]/[\beta _{k}^{-\alpha }\Gamma (\lambda _{ik}+1)(X_{jk}+\beta _{k})^{\lambda _{ik}+\alpha +1}]\) and \(IG_{\lambda _{ik}+\alpha +1,X_{jk}+\beta _{k}}(h_{ik})\) comes from (16).

Consider the largest part \({\mathbb {I}}^{c}_{{\textbf{X}}_i}=\left\{ \ell \in \{1,\ldots ,d\}~;X_{i\ell } \in [2h_{i\ell }, \infty )\right\} \). Following again (Chen 2000, pp. 474-475), we assume that for all \(X_{i\ell }\in [2h_{i\ell }, \infty )\) one has \(X_{i\ell }/h_{i\ell } \rightarrow \infty \) as \(n\rightarrow \infty \) for all \(\ell \in \{1,2,\ldots ,d\}\). From (2), (3), the Sterling formula \(\Gamma (z+1)\simeq \sqrt{2\pi }z^{z+1/2}\exp (-z)\) as \(z\rightarrow \infty \), and the well-known property \(\Gamma (z)=z^{-1}\Gamma (z+1)\) for \(z>0\), the term (17) can be successively calculated as

$$\begin{aligned}&\frac{G_{\rho (X_{i\ell };h_{i\ell }),h_{i\ell }}(X_{j\ell })}{\beta _{\ell }^{-\alpha }h_{i\ell }^{\alpha +1}}\exp (-\beta _{\ell }/h_{i\ell })\nonumber \\&\quad =\frac{X_{j\ell }^{(X_{i\ell }/h_{i\ell })-1}\exp (-X_{j\ell }/h_{i\ell })}{h_{i\ell }^{X_{i\ell }/h_{i\ell }} \Gamma (X_{i\ell }/h_{i\ell })\beta _{\ell }^{-\alpha }h_{i\ell }^{\alpha +1}}\exp (-\beta _{\ell }/h_{i\ell })\nonumber \\&\quad =\frac{X_{j\ell }^{(X_{i\ell }/h_{i\ell })-1}\exp (-X_{j\ell }/h_{i\ell })}{h_{i\ell }^{X_{i\ell }/h_{i\ell }} (X_{i\ell }/h_{i\ell })^{-1}\Gamma (1+X_{i\ell }/h_{i\ell })\beta _{\ell }^{-\alpha }h_{i\ell }^{\alpha +1}}\exp (-\beta _{\ell }/h_{i\ell })\nonumber \\&\quad =\frac{X_{j\ell }^{-1}}{\beta _{\ell }^{-\alpha }X_{i\ell }^{-1}}\frac{\exp [-(X_{j\ell }+ \beta _{\ell }-X_{i\ell }\log X_{j\ell })/h_{i\ell }]}{h_{i\ell }^{(X_{i\ell }/h_{i\ell })+\alpha +2}\sqrt{2\pi }(X_{i\ell }/h_{i\ell })^{(X_{i\ell }/h_{i\ell })+1/2}\exp (-X_{i\ell }/h_{i\ell })}\nonumber \\&\quad =\frac{X_{j\ell }^{-1}\Gamma (\alpha +1/2)}{\beta _{\ell }^{-\alpha }X_{i\ell }^{-1/2}\sqrt{2\pi }[C_{ij\ell }(\beta _\ell )]^{\alpha +1/2}} \times \frac{[C_{ij\ell }(\beta _\ell )]^{\alpha +1/2}\exp (-C_{ij\ell }(\beta _\ell )/h_{i\ell })}{h_{i\ell }^{\alpha +3/2}\Gamma (\alpha +1/2)}\nonumber \\&\quad =B_{ij\ell }(\alpha ,\beta _\ell )\,IG_{\alpha +1/2,C_{ij\ell }(\beta _\ell )}(h_{i\ell }), \end{aligned}$$
(19)

with \(B_{ij\ell }(\alpha ,\beta _\ell )= [X_{j\ell }^{-1}\Gamma (\alpha +1/2)]/(\beta _{\ell }^{-\alpha }X_{i\ell }^{-1/2}\sqrt{2\pi }[C_{ij\ell }(\beta _\ell )]^{\alpha +1/2})\), \(C_{ij\ell }(\beta _\ell )= X_{i\ell }\log (X_{i\ell }/X_{j\ell })+X_{j\ell }-X_{i\ell }+\beta _{\ell }\) and \(IG_{\alpha +1/2,C_{ij\ell }(\beta _\ell )}(h_{i\ell })\) is given in (16).

Combining (18) and (19), the expression \(N({{\textbf {h}}}_{i}\mid {{\textbf {X}}}_{i})\) in (17) becomes

$$\begin{aligned} N({{\textbf {h}}}_{i}\mid {{\textbf {X}}}_{i})&=\frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{(n-1)[\Gamma (\alpha )]^{d}}\sum _{j=1,j\ne i}^{n} \frac{1}{p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)} \nonumber \\&\quad \left( \prod _{k \in {\mathbb {I}}_{{\textbf{X}}_i}}A_{ijk}(\alpha ,\beta _k)\,IG_{\lambda _{ik}+\alpha +1,X_{jk}+\beta _{k}}(h_{ik})\right) \nonumber \\&\quad \quad \quad \times \left( \prod _{\ell \in {\mathbb {I}}^{c}_{{\textbf{X}}_i}}B_{ij\ell }(\alpha ,\beta _\ell )\,IG_{\alpha +1/2,S_{ij\ell }}(h_{i\ell })\right) . \end{aligned}$$
(20)

From (20), the denominator is successively computed as follows

$$\begin{aligned}&\int _{[0, \infty )^{d}} N({{\textbf {h}}}_{i}\mid {{\textbf {X}}}_{i})\,d{{\textbf {h}}}_{i}\nonumber \\&\quad =\frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{(n-1)[\Gamma (\alpha )]^{d}}\sum _{j=1,j\ne i}^{n} \frac{1}{p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)}\nonumber \\&\quad \quad \left( \prod _{k \in {\mathbb {I}}_{{\textbf{X}}_i}}A_{ijk}(\alpha ,\beta _k)\int _{0}^{\infty }IG_{\lambda _{ik}+\alpha +1,X_{jk}+ \beta _{k}}(h_{ik})\,dh_{ik}\right) \nonumber \\&\quad \quad \times \left( \prod _{\ell \in {\mathbb {I}}^{c}_{{\textbf{X}}_i}}B_{ij\ell }(\alpha ,\beta _\ell )\int _{0}^{\infty }IG_{\alpha +1/2,C_{ij\ell }(\beta _\ell )}(h_{i\ell })\,dh_{i\ell }\right) \nonumber \\&\quad =\frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{(n-1)[\Gamma (\alpha )]^{d}}\sum _{j=1,j\ne i}^{n} \frac{1}{p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)} \left( \prod _{k \in {\mathbb {I}}_{{\textbf{X}}_i}}A_{ijk}(\alpha ,\beta _k)\right) \left( \prod _{\ell \in {\mathbb {I}}^{c}_{{\textbf{X}}_i}}B_{ij\ell }(\alpha ,\beta _\ell )\right) \nonumber \\&\quad =\frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{(n-1)[\Gamma (\alpha )]^{d}}D_{i}(\alpha ,\varvec{\beta }), \end{aligned}$$
(21)

with \(D_{i}(\alpha ,\varvec{\beta })=p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)\sum _{j=1,j\ne i}^{n}\left( p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)\right) ^{-1}\left( \prod _{k \in {\mathbb {I}}_{{\textbf{X}}_i}}A_{ijk}(\alpha ,\beta _k)\right) \left( \prod _{\ell \in {\mathbb {I}}^{c}_{{\textbf{X}}_i}} B_{ij\ell }(\alpha ,\beta _\ell )\right) \). Finally, the ratio of (20) and (21) leads to Part (i).

(ii) We remind that the mean of the inverse gamma distribution \(\mathcal{I}\mathcal{G}(\alpha ,\beta _\ell )\) is \(\beta _\ell /(\alpha -1)\) and \({\mathbb {E}}(h_{i\ell }\mid {\textbf{X}}_{i})=\int _{0}^{\infty } h_{i\ell }\pi (h_{im}\mid {\textbf{X}}_{i})\,dh_{im}\) with \(\pi (h_{im}\mid {\textbf{X}}_{i})\) is the marginal distribution \(h_{im}\) obtained by integration of \(\pi ({\textbf{h}}_{i}\mid {\textbf{X}}_{i})\) for all components of \({\textbf{h}}_{i}\) except \(h_{im}\). Then, \(\pi (h_{im}\mid {\textbf{X}}_{i})=\int _{[0, \infty )^{d-1}}\pi ({\textbf{h}}_{i}\mid {\textbf{X}}_{i})\,d{\textbf{h}}_{i(-m)}\) where \(d{\textbf{h}}_{i(-m)}\) is the vector \(d{\textbf{h}}_{i}\) without the \(m^{th}\) component. If \(m\in {\mathbb {I}}_{{\textbf{X}}_i}\), one has

$$\begin{aligned}{} & {} \pi (h_{im}\mid {\textbf{X}}_{i})=\frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{D_{i}(\alpha ,\varvec{\beta })}\sum _{j=1,j\ne i}^{n} \frac{1}{p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)}\\ \quad {} & {} \left( \prod _{k \in {\mathbb {I}}_{{\textbf{X}}_i}}A_{ijk}(\alpha ,\beta _k)\right) \left( \prod _{\ell \in {\mathbb {I}}^{c}_{{\textbf{X}}_i}}B_{ij\ell }(\alpha ,\beta _\ell )\right) IG_{\alpha +1, X_{jm}+\beta _{m}}(h_{im}) \end{aligned}$$

and

$$\begin{aligned}{} & {} {\widehat{h}}_{im}={\mathbb {E}}(h_{im}\mid {\textbf{X}}_{i})=\frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{D_{i}(\alpha ,\varvec{\beta })}\sum _{j=1,j\ne i}^{n} \frac{1}{p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)}\nonumber \\ \quad {} & {} \left( \prod _{k \in {\mathbb {I}}_{{\textbf{X}}_i}}A_{ijk}(\alpha ,\beta _k)\right) \left( \prod _{\ell \in {\mathbb {I}}^{c}_{{\textbf{X}}_i}}B_{ij\ell }(\alpha ,\beta _\ell )\right) \left( \frac{X_{jm}+\beta _{m}}{\lambda _{im}+\alpha }\right) . \end{aligned}$$
(22)

If \(m\in {\mathbb {I}}_{{\textbf{X}}_i}^{c}\) and \(\alpha >1/2\), one gets

$$\begin{aligned}&{} & {} \pi (h_{im}\mid {\textbf{X}}_{i})&=\frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{D_{i}(\alpha ,\varvec{\beta })}\sum _{j=1,j\ne i}^{n} \frac{1}{p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)}\\&&{} & {} \quad \left( \prod _{k \in {\mathbb {I}}_{{\textbf{X}}_i}}A_{ijk}(\alpha ,\beta _k)\right) \left( \prod _{\ell \in {\mathbb {I}}^{c}_{{\textbf{X}}_i}}B_{ij\ell }(\alpha ,\beta _\ell )\right) IG_{\alpha +1/2,C_{ijm}(\beta _m)}(h_{im}) \end{aligned}$$

and

$$\begin{aligned}&{} & {} {\widehat{h}}_{im}={\mathbb {E}}(h_{im}\mid {\textbf{X}}_{i})&=\frac{p_{d}({\textbf{X}}_i;\widehat{\varvec{\theta }}_n)}{D_{i}(\alpha ,\varvec{\beta })}\sum _{j=1,j\ne i}^{n} \frac{1}{p_{d}({\textbf{X}}_{j};\widehat{\varvec{\theta }}_n)}\nonumber \\ && {} & {} \quad \left( \prod _{k \in {\mathbb {I}}_{{\textbf{X}}_i}}A_{ijk}(\alpha ,\beta _k)\right) \left( \prod _{\ell \in {\mathbb {I}}^{c}_{{\textbf{X}}_i}}B_{ij\ell }(\alpha ,\beta _\ell )\right) \left( \frac{C_{ijm}(\beta _m)}{\alpha -1/2}\right) . \end{aligned}$$
(23)

Combining (22) and (23), we therefore get the closed expression of Part (ii). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somé, S.M., Kokonendji, C.C., Adjabi, S. et al. Multiple combined gamma kernel estimations for nonnegative data with Bayesian adaptive bandwidths. Comput Stat 39, 905–937 (2024). https://doi.org/10.1007/s00180-023-01327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-023-01327-7

Keywords

Navigation