[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The fuzzy cluster analysis for interval value using genetic algorithm and its application in image recognition

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This article proposes the genetic algorithm in fuzzy clustering problem for interval value (IGI). In this algorithm, we use the overlap divergence to assess the similarity of the intervals, and take the new index (IDB) as the objective function to build the IGI. The crossover and selection operators in IGI are modified to optimize the results in clustering. The IGI not only determines the suitable number of groups, optimizes the result of clustering but also finds the probability of assigning the elements to the established clusters. The proposed algorithm is also applied in image recognition. The convergence of the IGI is considered and illustrated by the numerical examples. The complex computations of the IGI are performed conveniently and efficiently by the built Matlab program. The experiments on the data-sets having different characteristics and elements show the reasonableness of the IGI, and its advantages overcome other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Arivazhagan S, Shebiah RN, Nidhyanandhan SS, Ganesan L (2010) Fruit recognition using color and texture features. J Emerg Trends Comput Inf Sci 1(2):90–94

    Google Scholar 

  • Bandyopadhyay S, Maulik U (2001) Nonparametric genetic clustering: comparison of validity indices. IEEE Trans Syst Man Cybernet Part C 31(1):120–125

    Article  Google Scholar 

  • Bora DJ, Gupta AK (2014) Impact of exponent parameter value for the partition matrix on the performance of fuzzy c means algorithm. arXiv preprint. arXiv:1406.4007

  • Bustince H, Barrenechea E, Pagola M, Fernandez J, Xu Z, Bedregal B, Montero J, Hagras H, Herrera F, De B (2016) A historical account of types of fuzzy sets and their relationships. IEEE Trans Fuzzy Syst 24(1):179–194

    Article  Google Scholar 

  • Cabanes G, Bennani Y, Destenay R, Hardy A (2013) A new topological clustering algorithm for interval data. Pattern Recognit 46(11):3030–3039

    Article  Google Scholar 

  • Cannon RL, Dave JV, Bezdek JC (1986) Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans Pattern Anal Mach Intell 2:248–255

    Article  MATH  Google Scholar 

  • Chen JH, Hung WL (2015) An automatic clustering algorithm for probability density functions. J Statist Comput Simul 85(15):3047–3063

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng HD, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recognit 43(1):299–317

    Article  MATH  Google Scholar 

  • Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Patt Anal Mach Intell 2:224–227

    Article  Google Scholar 

  • De Carvalho FDA, Pimentel JT, Bezerra LX (2007) Clustering of symbolic interval data based on a single adaptive \(L^1\) distance. Neural Networks, 2007 International Joint Conference: 224–229. https://doi.org/10.1109/IJCNN.2007.4370959

  • De Souza RM, De Carvalho FDA (2004) Clustering of interval data based on city-block distances. Pattern Recognit Lett 25(3):353–365

    Article  Google Scholar 

  • De Souza RM, de Carvalho FDA, Silva FC (2004) Clustering of interval-valued data using adaptive squared euclidean distances. In: International Conference on Neural: 775–780. https://doi.org/10.1007/978-3-540-30499-9_119

  • De Carvalho FDA, Simões EC (2017) Fuzzy clustering of interval-valued data with city-block and hausdorff distances. Neurocomputing 266:659–673

    Article  Google Scholar 

  • Dinh PT, Tai VV (2020) Automatic fuzzy genetic algorithm in clustering for images based on the extracted intervals. Multimedia Tools and Applications: 1–23 (2020). https://doi.org/10.1007/s11042-020-09975-3

  • Falkenauer E (1989) Genetic algorithms and grouping problems. Wiley, New York

    MATH  Google Scholar 

  • Goh A, Vidal R (2008) Clustering and dimensionality reduction on riemannian manifolds. In: IEEE Conference on Computer Vision and Pattern Recognition: 1–7 https://doi.org/10.1109/CVPR.2008.4587422

  • Hajjar C, Hamdan H (2011) Self-organizing map based on hausdorff distance for interval-valued data. IEEE International Conference on Systems, Man, and Cybernetics: 1747–1752. https://doi.org/10.1109/ICSMC.2011.6083924

  • Hajjar C, Hamdan H (2013) Interval data clustering using self-organizing maps based on adaptive mahalanobis distances. Neural Netw 46:124–132

    Article  MATH  Google Scholar 

  • Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88–105

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

    Article  MATH  Google Scholar 

  • Hung WL, Yang JH, Shen KF (2016) Self-updating clustering algorithm for interval-valued data. Fuzzy Syst 2:1494–1500

    Google Scholar 

  • Jain M, Vayada MG (2017) Non-cognitive color and texture based image segmentation amalgamation with evidence theory of crop images. Signal Process Security 160–165

  • Kabir S, Wagner C, Havens TC, Anderson DT, Aickelin U (2017) Novel similarity measure for interval-valued data based on overlapping ratio. Fuzzy Systems, 2017. In: IEEE International Conference, pp.1–6

  • Kamel MS, Selim SZ (1994) New algorithms for solving the fuzzy clustering problem. Pattern Recognit 27(3):421–428

    Article  Google Scholar 

  • Lai CC (2005) A novel clustering approach using hierarchical genetic algorithms. Intell Autom Soft Comput 11(3):143–153

    Article  Google Scholar 

  • Liu Y, Wu X, Shen Y (2011) Automatic clustering using genetic algorithms. Appl Math Comput 218(4):1267–1279

    MathSciNet  MATH  Google Scholar 

  • Masson MH, Denœux T (2004) Clustering interval-valued proximity data using belief functions. Pattern Recognit Lett 25(2):163–171

    Article  Google Scholar 

  • Montanari A, Calò DG (2013) Model-based clustering of probability density functions. Adv Data Anal Classificat 7(3):301–319

    Article  MathSciNet  MATH  Google Scholar 

  • Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy syst 3(3):370–379

    Article  Google Scholar 

  • Patel HN, Jain R, Joshi MV (2011) Fruit detection using improved multiple features based algorithm. Int J Comp Appl 13(2):1–5

    Google Scholar 

  • Peng W, Li T (2006) Interval data clustering with applications. In: Tools with Artificial Intelligence, 18th IEEE International Conference on IEEE: 355–362. https://doi.org/10.1109/ICTAI.2006.71

  • Pham-Gia T, Turkkan N, Tai VV (2008) Statistical discrimination analysis using the maximum function. Commun Stat Simul Comput 37(2):320–336

    Article  MathSciNet  MATH  Google Scholar 

  • Ren Y, Liu YH, Rong J, Dew R (2009) Clustering interval-valued data using an overlapped interval divergence. Proc Eighth Australasian Data Min Conf 101:35–42

    Google Scholar 

  • Rodriguez SIR, De Carvalho FDA (2019) A new fuzzy clustering algorithm for interval-valued data based on City-Block distance. In: 2019 IEEE International Conference on Fuzzy Systems, pp. 1–6. https://doi.org/10.1109/FUZZ-IEEE.2019.8859017

  • Sato-Ilic M (2011) Symbolic clustering with interval-valued data. Proc Comp Sci 6:358–363

    Article  Google Scholar 

  • Tai VV, Thao NT (2018) Similar coefficient for cluster of probability density functions. Commun Statist Theory Methods 47(8):1792–1811

    Article  MathSciNet  MATH  Google Scholar 

  • Tai VV, Thao NT (2018) Similar coefficient of cluster for discrete elements. Sankhya B 80(1):19–36

    Article  MathSciNet  MATH  Google Scholar 

  • Tai VV, Trung N, Vo-Duy T, Ho-Huu V, Nguyen-Trang T (2017) Modified genetic algorithm-based clustering for probability density functions. J Statist Comput Simulat 87(10):1964–1979

    Article  MathSciNet  MATH  Google Scholar 

  • Tai VV, Dinh PT, Tuan LH, Thao NT (2010) An automatic clustering for interval data using the genetic algorithm. Annals of Operations Research, pp. 1–22. https://doi.org/10.1007/s10479-020-03606-8

  • Tai VV (2017) \(L^ 1\)-distance and classification problem by Bayesian method. J Appl Statist 44(3):385–401

    Article  MATH  Google Scholar 

  • Thao NT, Tai VV (2017) A new approach for determining the prior probabilities in the classification problem by Bayesian method. Adv Data Anal Classif 11(3):629–643

    Article  MathSciNet  MATH  Google Scholar 

  • Webb AR (2003) Statistical Pattern Recognition. John Wiley & Sons

Download references

Acknowledgements

The authors would like to thank Van Lang University, Vietnam for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Vovan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. The images of Data 1

Appendix. The images of Data 1

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phamtoan, D., Vovan, T. The fuzzy cluster analysis for interval value using genetic algorithm and its application in image recognition. Comput Stat 38, 25–51 (2023). https://doi.org/10.1007/s00180-022-01215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-022-01215-6

Keywords

Navigation