[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Local non-stationarity test in mean for Markov switching GARCH models: an approximate Bayesian approach

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In order to exploit mean-reverting behavior among the price differential between two markets, one can use unit root tests to determine which pairs of assets appear to exhibit mean-reverting behavior. Since nonlinear mean reversion shares the same meaning as local stationarity, this paper proposes a Bayesian hypothesis testing to detect the presence of a local unit root in the mean equation using Markov switching GARCH models. This model incorporates a fat-tailed error distribution to analyze asymmetric effects on both the conditional mean and conditional volatility of financial time series. To implement the test, we propose a numerical approximation of the marginal likelihoods to posterior odds by using an adaptive Markov Chain Monte Carlo scheme. Our simulation study demonstrates that the approximate Bayesian test performs properly. The proposed method utilizes the daily basis between the FTSE 100 Index and Index Futures as an illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. See Sarno and Valente (2000) and Monoyios and Sarno (2002).

References

  • Alizadeh AH, Nomikos N (2004) A Markov regime switching approach for hedging stock indices. J Futures Mark 24:649–674

    Article  Google Scholar 

  • Alizadeh AH, Nomikos NK, Pouliasis PK (2008) A Markov regime switching approach for hedging energy commodities. J Bank Finance 32:1970–1983

    Article  Google Scholar 

  • Ang A, Bekaert G (2002) Regime switches in interest rates. J Bus Econ Stat 20:163–182

    Article  MathSciNet  MATH  Google Scholar 

  • Bauwens L, Preminger A, Rombouts JV (2010) Theory and inference for a Markov switching GARCH model. Econom J 13:218–244

    Article  MathSciNet  MATH  Google Scholar 

  • Bauwens L, Rombouts JVK (2007) Bayesian clustering of many GARCH models. Econom Rev 26:365–386

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO, Delampady M (1987) Testing precise hypotheses. Stat Sci 2:317–335

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31:307–327

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T, Chou RY, Kroner KF (1992) ARCH modeling in finance: a review of the theory and empirical evidence. J Econom 52:5–59

    Article  MATH  Google Scholar 

  • Carlin BP, Chib S (1995) Bayesian model choice via Markov chain Monte Carlo methods. J R Stat Soc Ser B 57:473–484

    MATH  Google Scholar 

  • Carlin BP, Polson NG, David S Stofer DS (1992) Monte Carlo approach to nonnormal and nonlinear state-space modeling. J Am Stat Assoc 87:493–500

    Article  Google Scholar 

  • Chen CWS, Lee S (2015) A local unit root test in mean for financial time series. J Stat Comput Simul. doi:10.1080/00949655.2015.1037765

    MathSciNet  Google Scholar 

  • Chen CWS, Chen SY, Lee S (2013) Bayesian unit root test in double threshold heteroskedastic models. Comput Econ 42:471–490

    Article  Google Scholar 

  • Chen CWS, Gerlach R, Choy STB, Lin C (2010) Estimation and inference for exponential smooth transition nonlinear volatility models. J Stat Plan Inference 140:719–733

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, So MKP (2006) On a threshold heteroscedastic model. Int J Forecast 22:73–89

    Article  Google Scholar 

  • Chen CWS, So MKP, Lin EMH (2009) Volatility forecasting with double Markov switching GARCH models. J Forecast 28:681–697

    Article  MathSciNet  Google Scholar 

  • Chib S (1995) Marginal likelihood from the Gibbs output. J Am Stat Assoc 90:1313–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Chib S, Ramamurthy S (2014) DSGE models with student-t errors. Econom Rev 33:152–171

    Article  MathSciNet  Google Scholar 

  • Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74:427–431

    MathSciNet  MATH  Google Scholar 

  • Deschamps PJ (2008) Comparing smooth transition and Markov switching autoregressive models of US unemployment. J Appl Econom 23:435–462

    Article  MathSciNet  Google Scholar 

  • Engle R (1982) Autoregressive conditional Heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50:987–1007

    Article  MathSciNet  MATH  Google Scholar 

  • Francq C, Zakoïan JM (2001) Stationarity of multivariate Markov-switching ARMA models. J Econom 102:339–364

    Article  MathSciNet  MATH  Google Scholar 

  • Früuhwirth-Schnatter S (2001) Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J Am Stat Assoc 96:194–209

    Article  MathSciNet  MATH  Google Scholar 

  • Früuhwirth-Schnatter S (2006) Finite mixture and Markov switching models. Springer, New York

    Google Scholar 

  • Gelfand AE, Dey DK (1994) Bayesian model choice: asymptotic and exact calculations. J R Stat Soc Ser B 56:501–514

    MathSciNet  MATH  Google Scholar 

  • Gelman A, Roberts GO, Gilks WR (1996) Efficient metropolis jumping rules. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 5. Oxford University Press, Oxford, pp 599–607

    Google Scholar 

  • George EI, McCulloch RE (1997) Approaches for Bayesian variable selection. Stat Sin 7:339–373

    MATH  Google Scholar 

  • Gerlach R, Chen CWS (2008) Bayesian inference and model comparison for asymmetric smooth transition heteroskedastic models. Stat Comput 18:391–408

    Article  MathSciNet  Google Scholar 

  • Geweke J (1996) Variable selection and model comparison in regression. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 5. Oxford University Press, Oxford, pp 609–620

    Google Scholar 

  • Hall SG, Psaradakis Z, Sola M (1999) Detecting periodically collapsing bubbles: a Markov-switching unit root test. J App Econom 14:143–154

    Article  Google Scholar 

  • Hamilton JD (1989) A new approach to the economic analysis of nonstationary time series subject to changes in regime. Econometrica 57:357–384

    Article  MathSciNet  MATH  Google Scholar 

  • Jacquier E, Polson NG, Rossi PE (1994) Bayesian analysis of stochastic volatility models. J Bus Econ Stat 12:371–389

    MathSciNet  MATH  Google Scholar 

  • Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Koop G, Steel MFJ (1994) A decision-theoretic analysis of the unit-root hypothesis using mixtures of elliptical models. J Bus Econ Stat 12:95–107

    MathSciNet  Google Scholar 

  • Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root. J Econom 54:159–178

    Article  MATH  Google Scholar 

  • Li Y, Yu J (2010) A new Bayesian unit root test in stochastic volatility models. In: Research collection school of economics paper, vol 1240. Singapore Management University

  • Lubrano M (1995) Testing for unit roots in a Bayesian framework. J Econom 69:81–109

    Article  MathSciNet  MATH  Google Scholar 

  • Marriott J, Newbold P (2000) The strength of evidence for unit autoregressive roots and structural breaks: a Bayesian perspective. J Econom 98:1–25

    Article  MATH  Google Scholar 

  • Monoyios M, Sarno L (2002) Mean reversion in stock index futures markets: a nonlinear analysis. J Futures Mark 22:285–314

    Article  Google Scholar 

  • Nelson CR, Piger J, Zivot E (2001) Markov regime switching and unit-root tests. J Bus Econ Stat 19:404–415

    Article  MathSciNet  Google Scholar 

  • Newton MA, Raftery AE (1994) Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion). J R Stat Soc Ser B 56:3–48

    MathSciNet  MATH  Google Scholar 

  • Phillips PCB (1991) Bayesian routes and unit roots: de rebus prioribus semper est disputandum. J App Econom 6:435–474

    Article  Google Scholar 

  • Phillips PCB, Perron P (1988) Testing for unit roots in time series regression. Biometrika 75:335–346

    Article  MathSciNet  MATH  Google Scholar 

  • Said SE, Dickey DA (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71:599–607

    Article  MathSciNet  MATH  Google Scholar 

  • Sarno L, Valente G (2000) The cost of carry model and regime shifts in stock index futures markets: an empirical investigation. J Futures Mark 20:603–624

    Article  Google Scholar 

  • Schotman P, van Dijk HK (1991) A Bayesian analysis of the unit root in real exchange rates. J Econom 49:195–238

    Article  MATH  Google Scholar 

  • Sims CA (1988) Bayesian scepticism on unit root econometrics. J Econ Dyn Control 12:463–474

    Article  MathSciNet  MATH  Google Scholar 

  • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82:528–540

    Article  MathSciNet  MATH  Google Scholar 

  • Triantafyllopoulos K, Montana G (2011) Dynamic modeling of mean-reverting spreads for statistical arbitrage. Comput Manag Sci 8:23–49

    Article  MathSciNet  MATH  Google Scholar 

  • Vosseler A (2014) Bayesian model selection for unit root testing with multiple structural breaks. Comput Stat Data Anal. doi:10.1016/j.csda.2014.08.016

  • Zhang JY, Li Y, Chen ZM (2013) Unit root hypothesis in the presence of stochastic volatility, a Bayesian analysis. Comput Econ 41:89–100

    Article  MathSciNet  Google Scholar 

  • Zivot E, Phillips PCB (1994) A Bayesian analysis of trend determination in economic time series. Econom Rev 13:291–336

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the AE and referees very much for their time and careful, extensive comments on our paper, which have led to an improved version of it. Cathy W.S. Chen’s research is funded by the Ministry of Science and Technology, Taiwan (NSC 101-2118-M-035-006-MY2, MOST 103-2118-M-035-002-MY2). Sangyeol Lee’s research is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (No. 2015R1A2A2A010003894).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy W. S. Chen.

Appendix: MCMC sampling scheme

Appendix: MCMC sampling scheme

The MCMC sampler consists of simulating each parameter group from its full conditional posterior discussed in Sect. 3. The symbol k on a parameter denotes a draw of the parameter at the kth iteration of the algorithm. We randomly select the initial value of the state vector \({\varvec{S}}\) from a first-order Markov process assuming values in \(\{1, 2\}\). We set the initial values for all parameters, i.e. \(k =0\). One iteration of the algorithm involves the following steps:

Step 1: :

Sample \({\varvec{\phi }}_i|{\varvec{y}},{\varvec{\delta }}, {\varvec{S}}, {\varvec{\theta }}_{-{\varvec{\phi }}_i}\) from its posterior in (12). Check the constraint that \({\phi }_1^{(1)} \ge {\phi }_1^{(2)}\). If this constraint is not satisfied, then we relabel the draws \(({\varvec{\phi }}_1,{\varvec{\phi }}_2)\).

Step 2: :

Sample \(\delta ^{(i)}\) from a Bernoulli distribution with success probability in (14). Count the number \(I(\delta ^{(i)}=1)\), \(i=1, 2\).

Step 3: :

Sample \(s_t| {\varvec{y}},{\varvec{\delta }},{\varvec{S}}_{-t},{\varvec{\theta }}\), \(t=2, \ldots , T\) from its posterior in (14).

Step 4: :

Sample \(p_{ii}| {\varvec{y}}, {\varvec{\delta }},{\varvec{S}}, {\varvec{\theta }}_{-p_{ii}}\) from its posterior in (18).

Step 5: :

Sample \({\varvec{\alpha }}_i|{\varvec{y}}, {\varvec{\delta }},{\varvec{S}}, {\varvec{\theta }}_{-{\varvec{\alpha }}_i};\) from its posterior in (19).

Step 6: :

Sample \(\nu | {\varvec{y}}, {\varvec{\delta }},{\varvec{S}}, {\varvec{\theta }}_{-\nu }\) from its posterior.

Step 7: :

\(k=k+1\) and go to Step 1.

These steps are repeated until \(k=N\) so that the convergence of the Markov chain is achieved, and we calculate the posterior median \(\tilde{{\varvec{\theta }}}\). The first term of Eq. (8) is the log-likelihood evaluated at \(\tilde{{\varvec{\theta }}}\). We determine the mean of \(\pi _i\) (denoted by \(\tilde{\pi }_i\)) from Step 2, which is used to compute the prior odds ratio \(\tilde{\pi }_i/(1-\tilde{\pi }_i)\). The value of \(\text{ POR }= \text{ BF }\times \tilde{\pi }_i/(1-\tilde{\pi }_i)\) to test the unit root hypotheses is then obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C.W.S., Lee, S. & Chen, SY. Local non-stationarity test in mean for Markov switching GARCH models: an approximate Bayesian approach. Comput Stat 31, 1–24 (2016). https://doi.org/10.1007/s00180-015-0624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0624-4

Keywords

Navigation