[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Bayesian variable selection in multinomial probit model for classifying high-dimensional data

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Selecting a small number of relevant genes for classification has received a great deal of attention in microarray data analysis. While the development of methods for microarray data with only two classes is relevant, developing more efficient algorithms for classification with any number of classes is important. In this paper, we propose a Bayesian stochastic search variable selection approach for multi-class classification, which can identify relevant genes by assessing sets of genes jointly. We consider a multinomial probit model with a generalized \(g\)-prior for the regression coefficients. An efficient algorithm using simulation-based MCMC methods are developed for simulating parameters from the posterior distribution. This algorithm is robust to the choice of initial value, and produces posterior probabilities of relevant genes for biological interpretation. We demonstrate the performance of the approach with two well-known gene expression profiling data: leukemia data, lymphoma data, SRBCTs data and NCI60 data. Compared with other classification approaches, our approach selects smaller numbers of relevant genes and obtains competitive classification accuracy based on obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert J, Chib S (1993) Bayesian analysis of binary and polychotomous response data. J Am Stat Assoc 88:669–679

    Article  MATH  MathSciNet  Google Scholar 

  • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Staudt LM et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  Google Scholar 

  • Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 99:6562–6566

    Article  MATH  Google Scholar 

  • Antonov AV, Tetko IV, Mader MT, Budczies J, Mewes HW (2004) Optimization models for cancer classification: extracting gene interaction information from microarray expression data. Bioinformatics 20:644–652

    Article  Google Scholar 

  • Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z (2000) Tissue classification with gene expression profiles. J Comput Biol 7:559–583

    Article  Google Scholar 

  • Brown PJ (1993) Measurement, regression, and calibration. Clarendon, Oxford

    MATH  Google Scholar 

  • Brown PJ, Vannucci M, Fearn T (1998) Multivariate Bayesian variable selection and prediction. J R Stat Soc B 60:627–641

    Article  MATH  MathSciNet  Google Scholar 

  • Chu W, Ghahramani Z, Falciani F, Wild DL (2005) Biomarker discovery in microarray gene expression data with Gaussian processes. Bioinformatics 21:3385–3393

    Article  Google Scholar 

  • Dawid AP (1981) Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika 68:265–274

    Article  MATH  MathSciNet  Google Scholar 

  • Dettling M (2004) BagBoosting for tumor classification with gene expression data. Bioinformatics 20:3583–3593

    Article  Google Scholar 

  • Dettling M, Bühlmann P (2003) Boosting for tumor classification with gene expression data. Bioinformatics 19:1061–1069

    Article  Google Scholar 

  • Draminski M et al (2008) Monte Carlo feature selection for supervised classification. Bioinformatics 24:110–117

    Article  Google Scholar 

  • Díza-Uriarte, Andés (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7:3

    Article  Google Scholar 

  • Dudoit Y, Yang H, Callow M, Speed T (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97:77–87

    Article  MATH  Google Scholar 

  • Genz A, Bretz F (2002) Methods for the computation of multivariate t-probabilities. J Comput Graph Stat 11:950–971

    Article  MathSciNet  Google Scholar 

  • Gelfand A (1996) Model determination using sampling-based methods. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov chain Monte Carlo in practice. Chapman and Hall, London, pp 145–158

    Google Scholar 

  • George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88:881–889

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbls distribution, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  • Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain Monte Carlo in practise. Chapman and Hall, London

    Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer:class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  Google Scholar 

  • Gupta M, Ibrahim JG (2007) Variable selection in regression mixture modeling for the discovery of gene regulatory networks. J Am Stat Assoc 102:867–880

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta M, Ibrahim JG (2009) An information matrix prior for Bayesian analysis in generalized linear models with high dimensional data. Stat Sin 19:1641–1663

    MATH  MathSciNet  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V (2012) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  Google Scholar 

  • Ha HJ, Kubagawa H, Burrows PD (1992) Molecular cloning and expression pattern of a human gene homologous to the murine mb-1 gene. J Immunol 148:1526–1531

    Google Scholar 

  • Jaeger J, Sengupta R, Ruzzo WL (2003) Improved gene selection for classification of microarrays. Pac Symp Biocomput 8:53–64

    Google Scholar 

  • Khan J, Wei JS, Ringnr M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679

    Article  Google Scholar 

  • Kamps MP, Murre C, Sun X-H, Baltimore D (1990) A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 6:547–555

    Article  Google Scholar 

  • Kingsmore SF, Watson ML, Seldin MF (1995) Genetic mapping of the T lymphocyte-specific transcription factor 7 gene on mouse chromosome 11. Mamm Genome 6:378–380

    Google Scholar 

  • Koo JY, Sohn I, Kim S, Lee JW (2006) Structured polychotomous machine diagnosis of multiple cancer types using gene expression. Bioinformatics 22:950–958

    Article  Google Scholar 

  • Lachenbruch PA, Mickey MR (1968) Estimation of error rates in discriminant analysis. Technometrics 10:1–11

    Article  MathSciNet  Google Scholar 

  • Lamnisos D, Griffin JE, Steel FJ (2009) Mark Transdimensional sampling algorithms for Bayesian variable selection in classification problems with many more variables than observations. J Comput Graph Stat 18:592–612

    Article  MathSciNet  Google Scholar 

  • Le Cao K-A, Chabrier P (2008) ofw: an R package to selection continuous variables for multi-class classification with a stochastic wrapper method. J Stat Softw 28:1–16

    Google Scholar 

  • Lee Y, Lee CK (2003) Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19:1132–1139

    Article  Google Scholar 

  • Lee Y, Lin Y, Wahba G (2004) Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data. J Am Stat Assoc 99:67–81

    Article  MATH  MathSciNet  Google Scholar 

  • McLachlan GJ (1992) Discriminant analysis and statistical pattern recognition. Wiley, New York

    Book  Google Scholar 

  • Nguyen DV, Rocke DM (2002) Multi-class cancer classification via partial least squares with gene expression profiles. Bioinformatics 18:1216–1226

    Article  Google Scholar 

  • Panagiotelisa A, Smith M (2008) Bayesian identification, selection and estimation of semiparametric functions in high dimensional additive models. J Econometr 143:291–316

    Article  Google Scholar 

  • Rocke DR, Ideker T, Troyanskaya O, Quackenbush J, Dopazo J (2009) Papers on normalization, variable selection, classification or clustering of microarray data. Bioinformatics 25:701–702

    Article  Google Scholar 

  • Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, de Rijn MV, Waltham M, Pergamenschikov A, Lee JCF, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24:227–235

    Article  Google Scholar 

  • Sha N, Vannucci M, Tadesse MG, Brown PJ, Dragoni I, Davies N, Roberts TC, Contestabile A, Salmon N, Buckley C, Falciani F (2004) Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics 60:812–819

    Article  MATH  MathSciNet  Google Scholar 

  • Smith M, Kohn R (1996) Nonparametric regression via Bayesian variable selection. J Econometr 75:317–343

    Article  MATH  Google Scholar 

  • Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D (2005) Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21:3896–3904

    Article  Google Scholar 

  • Tibshirani R, Hastie T, Narasimhan B, Chu G (2003) Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Stat Sci 18:104–117

    Article  MATH  MathSciNet  Google Scholar 

  • Train K (2003) Discrete choice methods with simulation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–525

    Article  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  MATH  Google Scholar 

  • Yang AJ, Song XY (2010) Bayesian variable selection for disease classification using gene expression data. Bioinformatics 26:215–222

    Article  Google Scholar 

  • Yeo G, Poggio T (2001) Multiclass classification of SRBCTs, DSpace@MIT. Massachusetts Institute of Technology

  • Yeung KY, Bumgarner RE (2003) Multi-class classification of microarray data with repeated measurements: application to cancer. Genome Biol 4:R83

    Article  Google Scholar 

  • Yeung KY, Bumgarner RE, Raftery AE (2005) Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics 21:2394–2402

    Article  Google Scholar 

  • Zellner A (1986) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Bayesian inference and decision techniques: essays in honor of Bruno de Finetti, Amsterdam, pp 233–243

  • Zhou X, Wang X, Dougherty ER (2006) Multi-class cancer classification using multinomial probit regression with Bayesian gene selection. IEE Proc Syst Biol 153:70–78

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two referees and the editor for their constructive comments which have substantially improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Yang.

Additional information

Natural Science Foundation of China (11171065,11225103), and Natural Science Foundation of Jiangsu (BK20141326).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 96 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Li, Y., Tang, N. et al. Bayesian variable selection in multinomial probit model for classifying high-dimensional data. Comput Stat 30, 399–418 (2015). https://doi.org/10.1007/s00180-014-0540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-014-0540-z

Keywords

Navigation