[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An efficient algorithm for structured sparse quantile regression

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

An efficient algorithm is derived for solving the quantile regression problem combined with a group sparsity promoting penalty. The group sparsity of the regression parameters is achieved by using a \(\ell _{1,\infty }\)-norm penalty (or constraint) on the regression parameters. The algorithm is efficient in the sense that it obtains the regression parameters for a wide range of penalty parameters, thus enabling easy application of a model selection criteria afterwards. A Matlab implementation of the proposed algorithm is provided and some applications of the methods are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alhamzawi R, Yu K (2012) Variable selection in quantile regression via Gibbs sampling. J Appl Stat 39(4):799–813

    Article  MathSciNet  Google Scholar 

  • Alhamzawi R, Yu K, Benoit DF (2012) Bayesian adaptive Lasso quantile regression. Stat Model 12(3):279–297

    Article  MathSciNet  Google Scholar 

  • Almond D, Chay KY, Lee DS (2005) The costs of low birth weight. Q J Econ 120(3):1031–1083

    Google Scholar 

  • Auslander GK, Netzer D, Arad I (2003) Parental anxiety following discharge from hospital of their very low birth weight infants. Family Relat 52(1):12–21

    Article  Google Scholar 

  • Belloni A, Chernozhukov V (2011) \(\ell _1\)-penalized quantile regression in high-dimensional sparse models. Ann Stat 39(1):82–130

    Article  MathSciNet  MATH  Google Scholar 

  • Boardman JD, Powers DA, Padilla YC, Hummer RA (2002) Low birth weight, social factors, and developmental outcomes among children in the United States. Demography 39(2):353–368

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40(1):120–145

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, Gerlach R (2013) Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity. Comput Stat 28(3):1103–1131

    Article  MathSciNet  Google Scholar 

  • Chen CWS, Gerlach R, Wei DCM (2009) Bayesian causal effects in quantiles: accounting for heteroscedasticity. Comput Stat Data Anal 53:1993–2007; Special issue on Computational Econometrics

    Google Scholar 

  • Claeskens G, Hjort NL (2008) Model selection and model averaging. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Cohen A (1991) Dummy variables in stepwise regression. Am Stat 45(3):226–228

    Google Scholar 

  • Donoho DL (2010) An invitation to reproducible computational research. Biostatistics 11(3):385–388

    Article  MathSciNet  Google Scholar 

  • Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  • Fuchs JJ (2009) Fast implementation of a \(\ell _1-\ell _1\) regularized representations algorithm. In: IEEE international conference on acoustics, speech, and signal processing, pp 3329–3332

  • Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd S, Kimura H (ed), Recent advances in learning and control, lecture notes in control and information sciences, pp 95–110. Springer, Berlin

  • Grant M, Boyd S (2012) CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx

  • Hoel A, Kennard R (1970) Ridge regression: bias estimation of nonorthogonal problems. Technometrics 12(1):55–67

    Article  Google Scholar 

  • Hosmer DW, Lameshow S (1989) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46(1):33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, D’Orey V (1987) Algorithm AS 229: computing regression quantiles. J R Stat Soc C 36(3):383–393

    Google Scholar 

  • Koenker R, Hallock KF (2001) Quantile regression. J Econ Perspect 15(4):143–156

    Article  Google Scholar 

  • Koenker R, Machado JAF (1999) Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 94(448):1296–1310

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Ng P (2005) A Frisch–Newton algorithm for sparse quantile regression. Acta Math Appl Sin 21(2):225–236

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81(4):673–680

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann EL, Casella G (1998) Theory of point estimation, Springer texts in statistics, 2nd edn. Springer, New York

    Google Scholar 

  • Li Y, Zhu J (2008) \(\ell _1\)-norm quantile regression. J Comp Graph Stat 17(1):163–185

    Article  Google Scholar 

  • Lock RH (1993) New car data. J Stat Educ, 1(1). http://www.amstat.org/publications/jse/v1n1/datasets.lock.html

  • Loris I, Nassiri V (2013) Group quantile regression Matlab code. http://homepages.vub.ac.be/~igloris/pub.html

  • Ng P (1996) An algorithm for quantile smoothing splines. Comput Stat Data Anal 22(2):99–118

    Article  MATH  Google Scholar 

  • Osborne MR, Presnell B, Turlach BA (2000) A new approach to variable selection in least squares problems. IMA J Numer Anal 20(3):389–403

    Article  MathSciNet  MATH  Google Scholar 

  • Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 103(482):681–686

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Rosset S, Zhu J (2007) Piecewise linear regularized solution paths. Ann Stat 35(3):1012–1030

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  • Turlach BA, Venables WN, Wright SJ (2005) Simultaneous variable selection. Technometrics 47(3):349–363

    Article  MathSciNet  Google Scholar 

  • World Health Organization. International statistical classification of diseases and related health problems (ICD-10). http://www.who.int/classifications/icd/en/, 1992. 10th Revision

  • Yu K, Chen CWS, Reed C, Dunson DB (2013) Bayesian variable selection in quantile regression. Stat Its Interface 6(2):261–274

    Article  MathSciNet  Google Scholar 

  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B Stat Methodol 68(1):49–67

    Article  MathSciNet  MATH  Google Scholar 

  • Zou H, Yuan M (2008) Regularized simultaneous model selection in multiple quantiles regression. Comput Stat Data Anal 52(12):5296–5304

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I.L. is a research associate of the F.R.S.-FNRS (Belgium). This research was supported by VUB GOA-062 and by the FWO-Vlaanderen grant G.0564.09N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignace Loris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassiri, V., Loris, I. An efficient algorithm for structured sparse quantile regression. Comput Stat 29, 1321–1343 (2014). https://doi.org/10.1007/s00180-014-0494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-014-0494-1

Keywords

Navigation