[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Approaches to four types of bilevel programming problems with nonconvex nonsmooth lower level programs and their applications to newsvendor problems

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

This paper concentrates on solving bilevel programming problems where the lower level programs are max–min optimization problems and the upper level programs have max–max or max–min objective functions. Because these bilevel programming problems include nonconvex and nonsmooth lower level program problems, it is a challenging undone work. Giving some assumptions, we translate these problems into general single level optimization problems or min–max optimization problems. To deal with these equivalent min–max optimization problems, we propose a class of regularization methods which approximate the maximum function by using a family of maximum entropy functions. In addition, we examine the limit situations of the proposed regularization methods and show that any limit points of the global optimal solutions obtained by the approximation methods are the same as the ones of the original problems. Finally, we apply the proposed methods to newsvendor problems and use a numerical example to show their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allende GB, Still G (2013) Solving bilevel programs with the KKT-approach. Math Program 138(1–2):309–332

    Article  MATH  MathSciNet  Google Scholar 

  • Bard JF (1998) Practical bilevel optimization: algorithms and applications, vol 30. Springer, Berlin

    MATH  Google Scholar 

  • Colson B, Marcotte P, Savard G (2005) Bilevel programming: a survey. 4OR-Q J Oper Res 3(2):87–107

    Article  MATH  MathSciNet  Google Scholar 

  • Dempe S (2002) Foundations of bilevel programming. Springer, Berlin

    MATH  Google Scholar 

  • Dempe S, Zemkoho AB (2013) The bilevel programming problem: reformulations, constraint qualifications and optimality conditions. Math Program 138(1–2):447–473

    Article  MATH  MathSciNet  Google Scholar 

  • Dempe S, Zemkoho AB (2014) KKT reformulation and necessary conditions for optimality in nonsmooth bilevel optimization. SIAM J Optim 24(4):1639–1669

    Article  MATH  MathSciNet  Google Scholar 

  • Dempe S, Mordukhovich BS, Zemkoho AB (2012) Sensitivity analysis for two-level value functions with applications to bilevel programming. SIAM J Optim 22(4):1309–1343

    Article  MATH  MathSciNet  Google Scholar 

  • Facchinei F, Jiang H, Qi L (1999) A smoothing method for mathematical programs with equilibrium constraints. Math Program 85(1):107–134

    Article  MATH  MathSciNet  Google Scholar 

  • Fletcher R, Leyffer S, Ralph D, Scholtes S (2006) Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J Optim 17(1):259–286

    Article  MATH  MathSciNet  Google Scholar 

  • Guo P (2010a) One-shot decision approach and its application to duopoly market. Int J Inf Decis Sci 2(3):213–232

    Google Scholar 

  • Guo P (2010b) Private real estate investment analysis within one-shot decision framework. Int Real Estate Rev 13(3):238–260

    Google Scholar 

  • Guo P (2011) One-shot decision theory. IEEE Trans On Syst Man Cybern A Syst Hum 41(5):917–926

    Article  Google Scholar 

  • Guo P, Li Y (2014) Approaches to multistage one-shot decision making. Eur J Oper Res 236(2):612–623

    Article  MATH  MathSciNet  Google Scholar 

  • Guo P, Ma X (2014) Newsvendor models for innovative products with one-shot decision theory. Eur J Oper Res 239(2):523–536

    Article  MATH  MathSciNet  Google Scholar 

  • Guo L, Lin GH, Ye JJ (2015) Solving mathematical programs with equilibrium constraints. J Optim Theory Appl 166(1):234–256

    Article  MATH  MathSciNet  Google Scholar 

  • Li XS, Fang SC (1997) On the entropic regularization method for solving min–max problems with applications. Math Methods Oper Res 46(1):119–130

    Article  MATH  MathSciNet  Google Scholar 

  • Li Y, Guo P (2015) Possibilistic individual multi-period consumption-investment models. Fuzzy Sets Syst 274:47–61

    Article  MathSciNet  MATH  Google Scholar 

  • Lin GH, Fukushima M (2005) A modified relaxation scheme for mathematical programs with complementarity constraints. Ann Oper Res 133(1–4):63–84

    Article  MATH  MathSciNet  Google Scholar 

  • Lin GH, Xu M, Ye JJ (2014) On solving simple bilevel programs with a nonconvex lower level program. Math Program 144(1–2):277–305

    Article  MATH  MathSciNet  Google Scholar 

  • Luo ZQ, Pang JS, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Outrata JV (1990) On the numerical solution of a class of Stackelberg problems. Z Oper Res 34(4):255–277

    MATH  MathSciNet  Google Scholar 

  • Rockafellar RT, Wets RJB (1998) Variational analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Scholtes S (2001) Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J Optim 11(4):918–936

    Article  MATH  MathSciNet  Google Scholar 

  • Stephen B, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Vicente LN, Calamai PH (1994) Bilevel and multilevel programming: a bibliography review. J Global Optim 5(3):291–306

    Article  MATH  MathSciNet  Google Scholar 

  • Von Stackelberg H (1952) The theory of the market economy. Oxford University Press, Oxford

    Google Scholar 

  • Wang C, Guo P (2017) Behavioral models for first-price sealed-bid auctions with the one-shot decision theory. Eur J Oper Res 261(3):994–1000

    Article  MathSciNet  Google Scholar 

  • Xu M, Ye JJ (2014) A smoothing augmented Lagrangian method for solving simple bilevel programs. Comput Optim Appl 59(1–2):353–377

    Article  MATH  MathSciNet  Google Scholar 

  • Ye JJ (2005) Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J Math Anal Appl 307(1):350–369

    Article  MATH  MathSciNet  Google Scholar 

  • Ye JJ, Zhu DL (1995) Optimality conditions for bilevel programming problems. Optimization 33(1):9–27

    Article  MATH  MathSciNet  Google Scholar 

  • Ye JJ, Zhu DL (2010) New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches. SIAM J Optim 20(4):1885–1905

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu X, Lin GH (2016) Improved convergence results for a modified Levenberg–Marquardt method for nonlinear equations and applications in MPCC. Optim Methods Softw 31(4):791–804

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Guo.

Additional information

This work was supported by JSPS KAKENHI under Grant Number 15K03599.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Guo, P. Approaches to four types of bilevel programming problems with nonconvex nonsmooth lower level programs and their applications to newsvendor problems. Math Meth Oper Res 86, 255–275 (2017). https://doi.org/10.1007/s00186-017-0592-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-017-0592-2

Keywords

Navigation