[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Neighbourhood Search for constructing Pareto sets

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

This paper describes theNeighbourhood Search, an effectivemethod that we suggest for constructing Pareto sets in multiple objective problems with conegenerated orders. TheNeighbourhood Search is then applied to discounted Markov Decision Processes, resulting in original statements about topological properties of Pareto sets. A meaningful example is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman E (1999) Constrained Markov decision processes. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Armand P (1993) Finding all maximal efficient faces in multiobjective linear programming. Math Programm 61:357–375

    Article  MathSciNet  Google Scholar 

  • Armand P, Malivert C (1991) Determination of the efficient set in multiobjective linear programming. J Optim Theory Appl 70:467–488

    Article  MATH  MathSciNet  Google Scholar 

  • Bertsekas DP (2003) Convex analysis and optimization. Athena Scientific, Belmont

    MATH  Google Scholar 

  • Bertsekas DP, Shreve SE (1978) Stochastic optimal control. Academic Press, N.Y-S.Francisco-London

    MATH  Google Scholar 

  • Chen RC, Blankenship GL (2004) Dynamic programming equations for discounted constrained stochastic control. IEEE Trans Aut Control 49:699–709

    Article  MathSciNet  Google Scholar 

  • Dattorro J (2005) Convex optimization and eucledean distance geometry. Meboo Publishing, USA

    Google Scholar 

  • Dynkin EB, Yushkevich AA (1979) Controlled Markov processes and their applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ehrgott M (2000) Multicriteria optimization. Lecture Notes in economics and mathematical systems, vol 491. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Feinberg EA (2000) Constrained discounted Markov decision processes and Hamiltonian cycles. Math Oper Res 25:130–140

    Article  MATH  MathSciNet  Google Scholar 

  • Feinberg EA, Shwartz A (1996) Constrained discounted dynamic programming. Math Oper Res 21:922–945

    Article  MATH  MathSciNet  Google Scholar 

  • Feinberg E, Piunovskiy A (2002) Nonatomic total rewards Markov decision processes with multiple criteria. J Math Anal Appl 273:93–111

    Article  MATH  MathSciNet  Google Scholar 

  • Furukawa N (1980) Vector-valued Markovian decision processes with countable state space. In: Hartley R, Thomas LC, White DJ (eds) Recent Developments in Markov decision Processes. Academic Press, London New York, pp. 205–223

    Google Scholar 

  • Ghosh MK (1990) Markov decision processes with multiple costs. Oper Res Lett 9:257–260

    Article  MATH  MathSciNet  Google Scholar 

  • Hernandez-Lerma O, Romera R (2004) The scalarization approach to multiobjective Markov control problems: why does it work? Appl Math Optim 50:279–293

    Article  MATH  MathSciNet  Google Scholar 

  • Heyman DP, Sobel MJ (1984) Stochastic models in operations research Stochastic optimization, vol II. McGrow-Hill Book Company, New York

    Google Scholar 

  • Kaliszewski I (1994) Quantitative Pareto analysis by cone separation technique. Kluwer, Boston

    MATH  Google Scholar 

  • Magaril-Il’yaev GG, Tikhomirov VM (2003) convex analysis: theory and applications. Amer Math Soc Providence

  • Meyer P-A (1966) Probability and potentials. Blaisdell. Waltham, Massachusetts-Toronto-London

    MATH  Google Scholar 

  • Micevski T, Kuczera G, Coombes PJ (2002) Markov model for stormwater pipe deterioration. J Infrastruct Syst 8:49–56

    Article  Google Scholar 

  • Piunovskiy AB (1997) Optimal control of random sequences in problems with constraints. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Piunovskiy A (1998) Controlled random sequences: methods of convex analysis and problems with functional constraints. Russ Math Surveys 56:1233–1293

    Article  Google Scholar 

  • Piunovskiy A, Mao X (2000) Constrained Markovian decision processes: the dynamic programming approach. Oper Res Lett 27:119–126

    Article  MATH  MathSciNet  Google Scholar 

  • Preparata FP, Shamos MI (1993) Computational geometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Puterman ML (1994) Markov decision processes. Wiley, New York

    MATH  Google Scholar 

  • Stoer J, Witzgall C (1970) Convexity and optimization in finite dimensions. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Wakuta K (1996) A new class of policies in vector-valued Markov decision processes. J Math Anal Appl 202:623–628

    Article  MATH  MathSciNet  Google Scholar 

  • Wakuta K (1998) Discounted cost Markov decision processes with a constraint. Prob Eng Inf Sci 12:177–187

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Piunovskiy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorini, G., Pierro, F.D., Savic, D. et al. Neighbourhood Search for constructing Pareto sets. Math Meth Oper Res 65, 315–337 (2007). https://doi.org/10.1007/s00186-006-0117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-006-0117-x

Keywords

Navigation