[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Automation in construction scheduling: a review of the literature

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Automating the development of construction schedules has been an interesting topic for researchers around the world for almost three decades. Researchers have approached solving scheduling problems with different tools and techniques. Whenever a new artificial intelligence or optimization tool has been introduced, researchers in the construction field have tried to use it to find the answer to one of their key problems—the “better” construction schedule. Each researcher defines this “better” slightly different. This article reviews the research on automation in construction scheduling from 1985 to 2014. It also covers the topic using different approaches, including case-based reasoning, knowledge-based approaches, model-based approaches, genetic algorithms, expert systems, neural networks, and other methods. The synthesis of the results highlights the share of the aforementioned methods in tackling the scheduling challenge, with genetic algorithms shown to be the most dominant approach. Although the synthesis reveals the high applicability of genetic algorithms to the different aspects of managing a project, including schedule, cost, and quality, it exposed a more limited project management application for the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. AI communications, 7(1), 39–59. Retrieved from http://dl.acm.org/citation.cfm?id=196108.196115 Feb 2014

  2. Abd El Razek RH, Diab AM, Hafez SM, Aziz RF (2010) Time–cost-quality trade-off software by using simplified genetic algorithm for typical-repetitive construction projects. World Acad Sci, Eng Technol 37:312–321

    Google Scholar 

  3. Adeli H, Karim A (1997) Scheduling/cost optimization and neural dynamics model for construction. J Constr Eng Manag 123(4):450–458. doi:10.1061/(ASCE)0733-9364(1997)123:4(450)

    Article  Google Scholar 

  4. Avila Rondon RL, Carvalho AS, Hernandez GI (2008) Neural network modelling and simulation of the scheduling. Eighth IFIP international conference on information technology for balanced automation systems, Porto, Portugal. Springer USA, pp. 231–238

  5. Azaron A, Perkgoz C, Sakawa M (2005) A genetic algorithm approach for the time–cost trade-off in PERT networks. Appl Math Comput 168(2):1317–1339. doi:10.1016/j.amc.2004.10.021

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai Y, Zhao Y, Chen Y, Chen L (2009) Designing domain work breakdown structure (DWBS) using neural networks. 6th international symposium on neural networks, Wuhan, China. Springer Berlin Heidelberg, pp. 1146–1153

  7. Benjamin C, Babcock D, Yunus N, Kincaid J (1990) Knowledge‐based prototype for improving scheduling productivity. J Comput Civ Eng 4(2):124–137. doi:10.1061/(ASCE)0887-3801(1990)4:2(124)

    Article  Google Scholar 

  8. Büchmann-Slorup R, Andersson N (2010) BIM-based scheduling of construction: a comparative analysis of prevailing and BIM-based scheduling processes. Applications of IT in the AEC Industry: proceedings of the 27th international conference—CIB W78, Cairo, Egypt. Virginia Tech, p. 113. Retrieved from http://orbit.dtu.dk/en/publications/bimbased-scheduling-of-construction(80dc0b89-6638-4649-bafa-513bdd256991).html

  9. Chan W-T, Chua DK, Kannan G (1996) Construction resource scheduling with genetic algorithms. J Constr Eng Manag 122(2):125–132. doi:10.1061/(ASCE)0733-9364(1996)122:2(125)

    Article  Google Scholar 

  10. Damnjanovic I, Faghihi V, Scott C, McTigue E, Reinschmidt K (2013) Educational prediction markets: a construction project management case study. J Prof Issues Eng Educ Pract 139(2):134–138. doi:10.1061/(ASCE)EI.1943-5541.0000127

    Article  Google Scholar 

  11. Davis L (1985) Job shop scheduling with genetic algorithms. In: J J Grefenstette (ed) International conference on genetic algorithms and their applications. Lawrence Erlbaum Associates, Pittsburgh, pp. 136–140

  12. Dawood N, Sriprasert E (2006) Construction scheduling using multi‐constraint and genetic algorithms approach. Constr Manag Econ 24(1):19–30. doi:10.1080/01446190500310486

    Article  Google Scholar 

  13. Durkin J (2002) History and applications. In: Leondes CT, Leondes CT (eds) Expert systems: the technology of knowledge management and decision making for the 21st century, vol I. Academic Press, USA, pp 1–22. doi:10.1016/B978-012443880-4/50045-4

    Chapter  Google Scholar 

  14. Echeverry D, Ibbs C, Kim S (1991) Sequencing knowledge for construction scheduling. J Constr Eng Manag 117(1):118–130. doi:10.1061/(ASCE)0733-9364(1991)117:1(118)

    Article  MATH  Google Scholar 

  15. Faghihi V, Hessami A, Ford D (2014) Sustainability improvement program design using energy efficiency and conservation. J Clean Prod. doi:10.1016/j.jclepro.2014.12.040

    Google Scholar 

  16. Faghihi V, Reinschmidt KF, Kang J (2014) Construction scheduling using genetic algorithm based on BIM. Expert Sys Appl 41(16):7565–7578. doi:10.1016/j.eswa.2014.05.047

    Article  Google Scholar 

  17. Farley B, Clark WA (1954) Simulation of self-organizing systems by digital computer. Inf Theory, Transac IRE Prof Group 4(4):76–84. doi:10.1109/TIT.1954.1057468

    Article  MathSciNet  Google Scholar 

  18. Feng C, Liu L, Burns S (1997) Using genetic algorithms to solve construction time–cost trade-off problems. J Comput Civ Eng 11(3):184–189. doi:10.1061/(ASCE)0887-3801(1997)11:3(184)

    Article  Google Scholar 

  19. Fenves SJ, Flemming U, Hendrickson C, Maher ML, Schmitt G (1990) Integrated software environment for building design and construction. Comput Aided Des 22(1):27–36. doi:10.1016/0010-4485(90)90026-9

    Article  Google Scholar 

  20. Firat CE, Arditi D, Hamalainen J-P, Stenstrand J, Kiiras J (2010) Quantity take-off in model-based systems. Proceedings of the CIB W78 2010: 27th international conference, Cairo, Egypt. Retrieved from http://itc.scix.net/cgi-bin/works/Show?w78-2010-112 Feb 2014

  21. Firat CE, Kiiras J, Huovinen P (2008) A building construction information model for managing projects virtually. The 5th international conference on innovation in architecture, engineering and construction. Antalya, Turkey http://lboro.ac.uk/microsites/cice/aec2008

  22. Firat CE, Kiiras J, Huovinen P (2008) Solving fundamental problems in model based, semi‐automated building project scheduling. The 5th international conference on cybernetics and information technologies, systems and applications. Orlando, Florida, USA

  23. Firat CE, Kiiras J, Kähkönen K, Huovinen P (2007) Model based scheduling in building projects—is it oxymoron? 24th CIB W78 Conference, Maribor, Slovenia. CIB, the Netherlands

  24. Firat C, Arditi D, Hämäläinen J, Kiiras J (2009) Extended model-based master scheduling for building projects using advanced line of balance. 26th CIB W78 conference ‐ managing IT in construction. Istanbul, Turkey. CIB. Retrieved from http://itc.scix.net/cgi-bin/works/Show?w78-2009-1-29 Feb 2015

  25. Fischer M, Aalami F (1996) Scheduling with computer-interpretable construction method models. J Constr Eng Manag 122(4):337–347. doi:10.1061/(ASCE)0733-9364(1996)122:4(337)

    Article  Google Scholar 

  26. Fischer M, Tatum C (1997) Characteristics of design-relevant constructability knowledge. J Constr Eng Manag 123(3):253–260. doi:10.1061/(ASCE)0733-9364(1997)123:3(253)

    Article  Google Scholar 

  27. Fischer M, Aalami F, O’Brien Evans M (1994) Model-based constructibility analysis: the MOCA system. CIB W78 workshop on computer integrated construction. CIB, Helsinki

    Google Scholar 

  28. Gonçalves J, Mendesb J, Resendec M (2008) A genetic algorithm for the resource constrained multi-project scheduling problem. Eur J Oper Res 189(3):1171–1190. doi:10.1016/j.ejor.2006.06.074

    Article  Google Scholar 

  29. Hashemi Golpayegani SA, Emamizadeh B (2007) Designing work breakdown structures using modular neural networks. Decis Support Syst 44(1):202–222. doi:10.1016/j.dss.2007.03.013

    Article  Google Scholar 

  30. Hashemi Golpayegani SA, Parvaresh F (2011) The logical precedence network planning of projects, considering the finish-to-start (FS) relations, using neural networks. Int J Adv Manuf Technol 55(9–12):1123–1133. doi:10.1007/s00170-010-3125-1

    Article  Google Scholar 

  31. Hebb DO (1949) The organization of behavior. Wiley & Sons, New York

    Google Scholar 

  32. Hendrickson C, Martinelli D, Rehak D (1987) Hierarchical rule‐based activity duration estimation. J Constr Eng Manag 113(2):288–301. doi:10.1061/(ASCE)0733-9364(1987)113:2(288)

    Article  Google Scholar 

  33. Hendrickson C, Zozaya-Gorostiza C, Rehak D, Baracco-Miller E, Lim P (1986) An expert system architecture for construction planning. Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA: CMU Engineering Design Research Center. Retrieved from http://repository.cmu.edu/cgi/viewcontent.cgi?article=1033&context=cee Feb 2015

  34. Hendrickson C, Zozaya-Gorostiza C, Rehak D, Baracco-Miller E, Lim P (1987) An expert system for construction planning. J Comput Civ Eng 1(4):253–269. doi:10.1061/(ASCE)0887-3801(1987)1:4(253)

    Article  Google Scholar 

  35. Hooshyar B, Tahmani A, Shenasa M (2008) A genetic algorithm to time–cost trade off in project scheduling. Evolutionary computation, 2008. CEC 2008 (IEEE World Congress on Computational Intelligence), (Hong Kong. IEEE, New York

  36. Jackson P (1999) Introduction to expert systems, 3rd edn. Addison-Wesley, USA

    MATH  Google Scholar 

  37. Jaśkowski P, Sobotka A (2006) Scheduling construction projects using evolutionary algorithm. J Constr Eng Manag 132(8):861–870. doi:10.1061/(ASCE)0733-9364(2006)132:8(861)

    Article  Google Scholar 

  38. Karim A, Adeli H (1999) CONSCOM: an OO construction scheduling and change management system. J Constr Eng Manag 125(5):368–376. doi:10.1061/(ASCE)0733-9364(1999)125:5(368)

    Article  Google Scholar 

  39. Karim A, Adeli H (1999) OO information model for construction project management. J Constr Eng Manag 125(5):361–367. doi:10.1061/(ASCE)0733-9364(1999)125:5(361)

    Article  Google Scholar 

  40. Kartam N, Levitt R (1990) Intelligent planning of construction projects. J Comput Civ Eng 4(2):155–176. doi:10.1061/(ASCE)0887-3801(1990)4:2(155)

    Article  Google Scholar 

  41. Kartam N, Levitt R, Wilkins D (1991) Extending artificial intelligence techniques for hierarchical planning. J Comput Civ Eng 5(4):464–477. doi:10.1061/(ASCE)0887-3801(1991)5:4(464)

    Article  Google Scholar 

  42. Kataoka M (2008) Automated generation of construction plans from primitive geometries. J Constr Eng Manag 134(8):592–600. doi:10.1061/(ASCE)0733-9364(2008)134:8(592)

    Article  Google Scholar 

  43. Kim A, Hessami A, Faghihi V, Ford D (2012) Designing perpetual sustainability improvement programs for built infrastructures. The 30th international conference of the system dynamics society, St. Gallen, Switzerland. System Dynamics Society. Retrieved from http://www.systemdynamics.org/conferences/2012/proceed/papers/P1278.pdf Feb 2015

  44. Muñoz-Avila H, Gupta K, Aha DW, Nau DS (2002) Knowledge-based project planning. In: Dieng-Kuntz R, Matta N (eds) Knowledge management and organizational memories, 1st edn. Springer, USA, pp 125–134

    Chapter  Google Scholar 

  45. Kolodner JL (1992) An introduction to case-based reasoning. Artif Intell Rev 6(1):3–34. doi:10.1007/BF00155578

    Article  Google Scholar 

  46. Konaka A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91(9):992–1007. doi:10.1016/j.ress.2005.11.018

    Article  Google Scholar 

  47. König M, Beucke K, Tauscher E (2006) Management and evaluation of alternative construction tasks. In: L. Soibelman, & B. Akinci (eds) The 11th international conference on computing in civil and building engineering, Montreal, Canada, 2006

  48. Koo B, Fischer M, Kunz J (2007) Formalization of construction sequencing rationale and classification mechanism to support rapid generation of sequencing alternatives. J Comput Civ Eng 21(6):423–433. doi:10.1061/(ASCE)0887-3801(2007)21:6(423)

    Article  Google Scholar 

  49. Levitt RE, Kartam NA, Kunz JC (1988) Artificial intelligence techniques for generating construction project plans. J Constr Eng Manag 114(3):329–343. doi:10.1061/(ASCE)0733-9364(1988)114:3(329)

    Article  Google Scholar 

  50. Lin L, Hao X-C, Gen M, Jo J-B (2012) Network modeling and evolutionary optimization for scheduling in manufacturing. J Intell Manuf 23(6):2237–2253. doi:10.1007/s10845-011-0569-6

    Article  Google Scholar 

  51. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133. doi:10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  52. McGartland MR, Hendrickson CT (1985) Expert systems for construction project monitoring. J Constr Eng Manag 111(3):293–307. doi:10.1061/(ASCE)0733-9364(1985)111:3(293)

    Article  Google Scholar 

  53. McKinneya K, Fischer M (1998) Generating, evaluating and visualizing construction schedules with CAD tools. Autom Constr 7(6):433–447. doi:10.1016/S0926-5805(98)00053-3

    Article  Google Scholar 

  54. Mikulakova E, König M, Tauscher E, Beucke K (2008) Case-based reasoning for construction tasks. In: A. Ren, Z. Ma, & L. X (eds) The 12th international conference on computing in civil and building engineering, Beijing, China

  55. Mikulakova E, König M, Tauscher E, Beucke K (2010) Knowledge-based schedule generation and evaluation. Adv Eng Inform 24(4):389–403. doi:10.1016/j.aei.2010.06.010

    Article  Google Scholar 

  56. Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  57. Mohammadi G (2011) Using genetic algorithms to solve industrial time–cost trade-off problems. Ind J Sci Technol 4(10):1273–1278

    Google Scholar 

  58. Mohan S (1990) Expert systems applications in construction management and engineering. J Constr Eng Manag 116(1):87–99. doi:10.1061/(ASCE)0733-9364(1990)116:1(87)

    Article  Google Scholar 

  59. Morad A, Beliveau Y (1991) Knowledge‐based planning system. J Constr Eng Manag 117(1):1–12. doi:10.1061/(ASCE)0733-9364(1991)117:1(1)

    Article  Google Scholar 

  60. Moselhi O, Nicholas M (1990) Hybrid expert system for construction planning and scheduling. J Constr Eng Manag 116(2):221–238. doi:10.1061/(ASCE)0733-9364(1990)116:2(221)

    Article  Google Scholar 

  61. Mukkamalla S, Muñoz-Avila H (2002) Case acquisition in a project planning environment. 6th European conference. 2416, Aberdeen, Scotland, UK. Springer, Berlin Heidelberg, pp. 264–277

  62. Muñoz-Avila H, Aha DW, Nau DS, Breslow LA, Weber R, Yamal F (2001) SiN: integrating case-based reasoning with task decomposition. Seventeenth international joint conference on artificial intelligence. Morgan Kaufmann, Seattle, Washington, USA

  63. Murata T, Ishibuchi H, Tanaka H (1996) Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput Ind Eng 30(4):957–968. doi:10.1016/0360-8352(96)00045-9

    Article  Google Scholar 

  64. Navinchandra D, Sriram D, Logcher R (1988) GHOST: project network generator. J Comput Civ Eng 2(3):239–254. doi:10.1061/(ASCE)0887-3801(1988)2:3(239)

    Article  Google Scholar 

  65. Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs

  66. Phelan R, Radjy F, Haas C, Hendrickson C (1990) Computer‐aided concrete‐placement optimization. J Constr Eng Manag 116(1):172–187. doi:10.1061/(ASCE)0733-9364(1990)116:1(172)

    Article  Google Scholar 

  67. Sabuncuoglu I (1998) Scheduling with neural networks: a review of the literature and new research directions. Prod Plann Control: Manag Oper 9(1):2–12. doi:10.1080/095372898234460

    Article  Google Scholar 

  68. Schirmer A (2000) Case-based reasoning and improved adaptive search for project scheduling. Naval Res Log (NRL) 47(3):201–222. doi:10.1002/(SICI)1520-6750(200004)47:3<201::AID-NAV2>3.0.CO;2-L

    Article  MathSciNet  MATH  Google Scholar 

  69. Senouci A, Al-Derham HR (2008) Genetic algorithm-based multi-objective model for scheduling of linear construction projects. Adv Eng Softw 39(12):1023–1028. doi:10.1016/j.advengsoft.2007.08.002

    Article  MATH  Google Scholar 

  70. Shaked O, Warszawski A (1992) CONSCHED: expert system for scheduling of modular construction projects. J Constr Eng Manag 188(3):488–506. doi:10.1061/(ASCE)0733-9364(1992)118:3(488)

    Article  Google Scholar 

  71. Shaked O, Warszawski A (1995) Knowledge-based system for construction planning of high-rise buildings. J Constr Eng Manag 121(2):172–182. doi:10.1061/(ASCE)0733-9364(1995)121:2(172)

    Article  Google Scholar 

  72. Smolka G (1992) Feature constraint logics for unification grammars. Journal of logic programming, 12, 51–87. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.888 Feb 2015

  73. Tauscher E, Mikulakova E, Beucke K, König M (2009) Automated generation of construction schedules based on the IFC object model. International workshop on computing in civil engineering. ASCE, Austin, pp 666–675. doi:10.1061/41052(346)66

    Google Scholar 

  74. Tauscher E, Mikulakova E, König M, Beucke K (2007) Generating construction schedules with case-based reasoning support. In: Soibelman L, Akinci B (eds) Proceedings of the international workshop on computing in civil engineering. Pennsylvania: ASCE, Pittsburgh, pp 119–126. doi:10.1061/40937(261)15

    Google Scholar 

  75. Toklu YC (2002) Application of genetic algorithms to construction scheduling with or without resource constraints. Can J Civ Eng 29(3):421–429

    Article  Google Scholar 

  76. Tulke J, Nour M, Beucke K (2008) Decomposition of BIM objects for scheduling and 4D simulation. In: Scherer R, Zarli A (eds) eWork and eBusiness in architecture, engineering and construction. CRC Press, London, pp 653–660. doi:10.1201/9780203883327.ch73

    Chapter  Google Scholar 

  77. Vriesa BD, Harink JM (2007) Generation of a construction planning from a 3D CAD model. Autom Constr 16(1):13–18. doi:10.1016/j.autcon.2005.10.010

    Article  Google Scholar 

  78. Wall MB (1996) A genetic algorithm for resource-constrained scheduling. MIT, Cambridge

  79. Wang SQ (2001) ESSCAD: expert system integrating construction scheduling with CAD. CIB-W78 international conference. IT in Construction in Africa 2001, Mpumalanga, South Africa. CIB, the Netherlands

  80. Watson I, Marir F (1994) Case-based reasoning: a review. Knowl Eng Rev 9(4):327–354. doi:10.1017/S0269888900007098

    Article  Google Scholar 

  81. Weldu YW, Knapp GM (2012) Automated generation of 4D building information models through spatial reasoning. Construction research congress, West Lafayette, Indiana, United States. ASCE, USA

  82. Xu K (2006) Case-Based Task Decomposition with incomplete domain descriptions. Lehigh University, Department of Computer Science and Engineering, Bethlehem, PA. Lehigh University. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3038&rep=rep1&type=pdf Feb 2015

  83. Xu K, Muñoz-Avila H (2003) CBM-Gen+: an algorithm for reducing case base inconsistencies in hierarchical and incomplete domains. In: Ashley KD, Bridge D (eds) 5th international conference on case-based reasoning. Springer Berlin Heidelberg, Trondheim, pp 665–678. doi:10.1007/3-540-45006-8_50

    Google Scholar 

  84. Xu K, Muñoz-Avila H (2003) Maintaining consistency in project planning reuse. In: K. D. Ashley, & D. Bridge (eds) 5th international conference on case-based reasoning), Trondheim, Norway. Springer Berlin Heidelberg, Trondheim pp. 679–690

  85. Xu K, Muñoz-Avila H (2004) CaBMA: case-based project management assistant. The sixteenth innovative applications of artificial intelligence conference), San Jose, California. The AAAI Press. Retrieved from http://www.aaai.org/Library/IAAI/iaai04contents.php Feb 2015

  86. Xu K, Muñoz-Avila H (2005) A domain-independent system for case-based task decomposition without domain theories. The 20th national conference on artificial intelligence), Pittsburgh, Pennsylvania. The AAAI Press. Retrieved from http://www.aaai.org/Library/AAAI/aaai05contents.php Feb 2015

  87. Xu K, Muñoz-Avila H (2008) CaBMA: a case-based reasoning system for capturing, refining, and reusing project plans. Knowl Inf Syst 15(2):215–232. doi:10.1007/s10115-007-0077-3

    Article  Google Scholar 

  88. Zheng DX, Ng ST, Kumaraswamy MM (2002) Applying genetic algorithm techniques for time–cost optimization. In: D. Greenwood (ed) 18th annual ARCOM conference 2, University of Northumbria, Association of Researchers in Construction Management, 2002

  89. Zheng D, Ng S, Kumaraswamy M (2004) Applying a genetic algorithm-based multiobjective approach for time–cost optimization. J Constr Eng Manag 130(2):168–176. doi:10.1061/(ASCE)0733-9364(2004)130:2(168)

    Article  Google Scholar 

  90. Zheng D, Ng S, Kumaraswamy M (2005) Applying Pareto ranking and niche formation to genetic algorithm-based multiobjective time–cost optimization. J Constr Eng Manag 131(1):81–91. doi:10.1061/(ASCE)0733-9364(2005)131:1(81)

    Article  Google Scholar 

  91. Zozaya-Gorostiza C, Hendrickson C, Rehak DR (1989) Knowledge-based construction project planning. In: R. J. Bard (ed) Excellence in the constructed project), San Francisco, California. ASCE, pp. 217–222. Retrieved from http://cedb.asce.org/cgi/WWWdisplay.cgi?63892 Feb 2015

  92. Zozaya-Gorostiza C, Hendrickson C, Rehak DR, Lim P (1988) Construction planex: a knowledge intensive planner for construction projects. The 5th ISARC), Tokyo, Japan. International Association for Automation and Robotics in Construction, pp. 511–520. Retrieved from http://www.iaarc.org/publications/fulltext/Construction_planex_A_knowledge_intensive_planner_for_construction_projects.PDF Feb 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Faghihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faghihi, V., Nejat, A., Reinschmidt, K.F. et al. Automation in construction scheduling: a review of the literature. Int J Adv Manuf Technol 81, 1845–1856 (2015). https://doi.org/10.1007/s00170-015-7339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7339-0

Keywords

Navigation