[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dimension measurement of hot large forgings with a novel time-of-flight system

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The dimension measurement of hot large forgings is necessary for process control and product quality. However, the conventional technique in forging plants leads to a high scrap rate of raw materials. In order to reduce the waste and increase the productivity, this paper presents a novel measurement technique based on the pulsed time-of-flight (TOF) laser radar to measure the dimensions of hot large forgings. The system consists of a TOF, a scanning device of the two-degree-of-freedom (2-dof) spherical parallel mechanism (SPM), and two motors. Then, its measuring principle and the SPM are described. A special data-processing method is developed to extract the dimensions and the shape of a large forging by scanning for a few times. The laboratory experiments indicate that the shape and dimensions such as the diameter and length can be achieved by virtue of the TOF system. The dimension measurement in a forging plant is also conducted to verify the effectiveness of the presented system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshida K, Hirose S (1988) Laser triangulation range finder available under direct sunlight. Proc IEEE Int Conf Robot Autom 3:1702–1708

    Google Scholar 

  2. Tamura S, Kim EK, Close R, Sato Y (1994) Error correction in laser scanner three-dimensional measurement by two-axis model and coarse-fine parameter search. Pattern Recogn 27(3):331–338. doi:10.1016/0031-3203(94)90111-2

    Article  Google Scholar 

  3. Shiou FJ, Gao JS (2003) Effect of slice thickness on the profile accuracy of model maker rapid prototyping measured by a circular triangulation laser probe. Int J Adv Manuf Technol 22:796–804. doi:10.1007/s00170-002-1519-4

    Article  Google Scholar 

  4. Meng L, Qiang F (1999) Three-dimensional profilometry based on coded linear-structure light with isosceles triangle teeth. Appl Opt 38(31):6528–6531. doi:10.1364/AO.38.006528

    Article  Google Scholar 

  5. Xi F, Liu Y, Feng HY (2001) Error compensation for three-dimensional line laser scanning data. Int J Adv Manuf Technol 18:211–216. doi:10.1007/s001700170076

    Article  Google Scholar 

  6. Lerons PM, Fernández JL, García-Bermejo JG, Zalama E (2005) Total quality control for automotive raw foundry brake disks. Int J Adv Manuf Technol 27:359–371. doi:10.1007/s00170-004-2165-9

    Article  Google Scholar 

  7. Yachide Y, Oike Y, Ikeda M, Asada K (2005) Real-time 3-D measurement system based on light-section method using smart image sensor. Proc IEEE Int Conf Image Process 3:1008–1011

    Google Scholar 

  8. Senoh M, Kozawa F, Yamada M (2006) Development of shape measurement system using an omnidirectional sensor and light sectioning method with laser beam scanning for Hume pipes. Opt Eng 45(6):064301. doi:10.1117/1.2214690

    Article  Google Scholar 

  9. Cheng JT, Wang CJ, Zhao C, Mo JH (2007) Design of a servo motion system and an image sampling and processing system on a 3D laser scanner. Int J Adv Manuf Technol 33:1143–1148. doi:10.1007/s00170-006-0555-x

    Article  Google Scholar 

  10. Zhong ZW, Lu YG (2004) An AFM scanning moiré technique for the inspection of surface deformations. Int J Adv Manuf Technol 23:462–466. doi:10.1007/s00170-003-1770-3

    Article  Google Scholar 

  11. Zhang S, Yau ST (2006) High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method. Opt Express 14(7):2644–2649. doi:10.1364/OE.14.002644

    Article  Google Scholar 

  12. Han C, Han B (2007) Phase-shifting in achromatic moiré interferometry system. Opt Express 15(16):9970–9976. doi:10.1364/OE.15.009970

    Article  Google Scholar 

  13. Yamamoto Y, Morimoto Y, Fujigaki M (2007) Two-directional phase-shifting moiré interferometry and its application to thermal deformation measurement of an electronic device. Meas Sci Technol 18(3):561–566. doi:10.1088/0957-0233/18/3/004

    Article  Google Scholar 

  14. Buytaert JAN, Dirckx JJJ (2008) Moire profilometry using liquid crystals for projection and demodulation. Opt Express 16(1):179–193. doi:10.1364/OE.16.000179

    Article  Google Scholar 

  15. Esteban CH, Schmitt F (2004) Silhouette and stereo fusion for 3D object modeling. Comput Vis Image Underst 96(3):367–392. doi:10.1016/j.cviu.2004.03.016

    Article  Google Scholar 

  16. Kim GB, Chung SC (2004) An accurate and robust stereo matching algorithm with variable windows for 3D measurements. Mechatronics 14(6):715–735. doi:10.1016/j.mechatronics.2004.01.004

    Article  Google Scholar 

  17. Kim GB (2004) Stereo vision system on machine tool for automated reconstruction of surface morphology with depth discontinuity. Int J Adv Manuf Technol 24:433–439. doi:10.1007/s00170-003-1781-0

    Article  Google Scholar 

  18. Kim H, Sohn K (2005) 3D reconstruction from stereo images for interactions between real and virtual objects. Signal Process Image Commun 20(1):61–75. doi:10.1016/j.image.2004.10.004

    Article  MATH  Google Scholar 

  19. Yuan ML, Ong SK, Nee AYC (2005) Registration based on projective reconstruction technique for augmented reality systems. IEEE Trans Vis Comput Graph 11(3):254–264. doi:10.1109/TVCG.2005.48

    Article  Google Scholar 

  20. Zhang K, Xu B, Tang L, Shi H (2006) Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms. Int J Adv Manuf Technol 29:722–728. doi:10.1007/s00170-005-2566-4

    Article  Google Scholar 

  21. Chen CL, Tai CL, Lio YF (2007) Virtual binocular vision systems to solid model reconstruction. Int J Adv Manuf Technol 35:379–384. doi:10.1007/s00170-007-1178-6

    Article  Google Scholar 

  22. Magdeev VS (1991) Error in the measurement of the coordinates of surface points of large components with two theodolites. Meas Tech 34(5):438–440. doi:10.1007/BF00975254

    Article  Google Scholar 

  23. Suresha KHN, Nataraju BS, Gerard JP, Prasad BV (2002) Theodolite based hardware and software interface for noncontact 3-D measurements. J Spacecr Technol 12(2):35–48

    Google Scholar 

  24. Li Y, Liu Z (2005) A new high-precision measurement system used in the image calibration of large-sized photographic instrument. Proc SPIE 5638:404–411. doi:10.1117/12.577464

    Article  Google Scholar 

  25. Xiong C, Liu Z, Pan Y (2006) High-accuracy coordinates measurement by electronic theodolites. Proc SPIE 6344:63442W. doi:10.1117/12.694168

    Article  Google Scholar 

  26. Tong Z, Tang W (2007) The application of data fusion in optical theodolite coordinate measurement system. Proc SPIE 6595:65951O. doi:10.1117/12.725814

    Article  Google Scholar 

  27. Määtta K, Kostamovaara J, Myllylä R (1993) Profiling of hot surfaces by pulsed time-of-flight laser range finder techniques. Appl Opt 32(27):5334–5347

    Article  Google Scholar 

  28. Andersson P (2006) Long-range three-dimensional imaging using range-gated laser radar images. Opt Eng 45(3):034301. doi:10.1117/1.2183668

    Article  MathSciNet  Google Scholar 

  29. Rivas MB, Maslanik JA, Sonntag JG, Axelrad P (2006) Sea ice roughness from airborne LIDAR profiles. IEEE Trans Geosci Remote Sens 44(11):3032–3037. doi:10.1109/TGRS.2006.875775

    Article  Google Scholar 

  30. Guidi G, Frischer B, Russo M, Spinetti A, Carosso L, Micoli LL (2006) Three-dimensional acquisition of large and detailed cultural heritage objects. Mach Vis Appl 17(6):349–360. doi:10.1007/s00138-006-0029-z

    Article  Google Scholar 

  31. Dworkin SB, Nye TJ (2006) Image processing for machine vision measurement of hot formed parts. J Mater Process Technol 174(1–3):1–6. doi:10.1016/j.jmatprotec.2004.10.019

    Article  Google Scholar 

  32. Blais F (2004) Review of 20 years of range sensor development. J Electron Imaging 13(1):231–243. doi:10.1117/1.1631921

    Article  Google Scholar 

  33. Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell 21(5):476–480. doi:10.1109/34.765658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisong Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Z., Gao, F., Jin, Z. et al. Dimension measurement of hot large forgings with a novel time-of-flight system. Int J Adv Manuf Technol 44, 125–132 (2009). https://doi.org/10.1007/s00170-008-1807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1807-8

Keywords

Navigation