Abstract
The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koopman spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for predictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in order to isolate a source of systematic error. We show that DMD’s first stage, a subspace projection step, systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error, we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage perspective generalizes the de-biasing framework to other related methods as well. TDMD’s performance is demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynamical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that reveal detailed spatial structures missed by standard DMD.
Similar content being viewed by others
References
Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)
Bagheri, S.: Effects of weak noise on oscillating flows: linking quality factor, floquet modes, and Koopman spectrum. Phys. Fluids 26, 094104 (2014)
Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures, vol. 729. Wiley, New York (2011)
Berger, E., Sastuba, M., Vogt, D., Jung, B., Ben Amor, H.: Estimation of perturbations in robotic behavior using dynamic mode decomposition. Adv. Robot. 29(5), 331–343 (2015)
Bourantas, G.C., Ghommem, M., Kagadis, G.C., Katsanos, K., Loukopoulos, V.C., Burganos, V.N., Nikiforidis, G.C.: Real-time tumor ablation simulation based on dynamic mode decomposition method. Med. Phys. 41, 053301 (2014)
Box, G.E., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ (1994)
Brunton, B.W., Johnson, L.A., Ojemann, J.G., Kutz, J.N.: Extracting spatial–temporal coherent patterns in large-scale neural recording using dynamic mode decomposition. J. Neurosci. Methods. 258, 1–15 (2016). doi:10.1016/j.jneumeth.2015.10.010
Budis̆ić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22, 047510 (2012)
Chen, K., Tu, J., Rowley, C.: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analysis. J. Nonlinear Sci. 22(6), 887–915 (2012)
Davison, E.J.: A method for simplifying linear dynamic systems. IEEE Trans. Autom. Control 11(1), 93–101 (1966)
Dawson, S.T.M., Hemati, M.S., Williams, M.O., Rowley, C.W.: Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Exp. Fluids 57(42), (2016)
Duke, D., Honnery, D., Soria, J.: Experimental investigation of nonlinear instabilities in annular liquid sheets. J. Fluid Mech. 691, 594–604 (2012)
Duke, D., Soria, J., Honnery, D.: An error analysis of the dynamic mode decomposition. Exp. Fluids 52(2), 529–542 (2012)
Fierro, R.D., Bunch, J.R.: Orthogonal projection and total least squares. Numer. Linear Algebra Appl. 2(2), 135–153 (1995)
Fierro, R.D., Bunch, J.R.: Perturbation theory and orthogonal projection methods with applications to least squares and total least squares. Linear Algebra Its Appl. 234, 71–96 (1996)
Fierro, R.D., Golub, G.H., Hansen, P.C., O’Leary, P.: Regularization by truncated total least squares. SIAM J. Sci. Comput. 18(4), 1223–1241 (1997)
Gleser, L.J.: Estimation in a multivariate “error-in-variables” regression model: large sample results. Ann. Stat. 9(1), 24–44 (1981)
Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)
Golub, G.H., Van Loan, C.F.: An analysis of the total least squares problem. SIAM J. Numer. Anal. 17(6), 883–893 (1980)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)
Goulart, P., Wynn, A., Pearson, D.: Optimal mode decomposition for high dimensional systems. In: 51st IEEE Conference on Descision and Control (2012)
Grosek, J., Kutz, J.N.: Dynamic mode decomposition for real-time background/foreground separation in video. arXiv:1404.7592v1 (2014)
Guéniat, F., Mathelin, L., Pastur, L.R.: A dynamic mode decomposition approach for large and arbitrarily sampled systems. Phys. Fluids 27, 025113 (2015)
Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 32, 561–580 (1992)
Hasselmann, K.: PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res. 93(D9), 11015–11021 (1988)
Hemati, M.S., Williams, M.O., Rowley, C.W.: Dynamic mode decomposition for large and streaming datasets. Phys. Fluids 26, 111701 (2014)
Ho, B.L., Kalman, R.E.: Effective construction of linear, state-variable models from input/output functions. Regelungstechnik 14(12), 545–548 (1966)
Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press, Cambridge (2012)
Jovanović, M.R., Schmid, P.J., Nichols, J.W.: Sparsity promoting dynamic mode decomposition. Phys. Fluids 26, 024103 (2014)
Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter-identification and model-reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985)
Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)
Koopman, B.O., von Neumann, J.: Dynamical systems of continuous spectra. Proc. Natl. Acad. Sci. 18(3), 255–263 (1932)
Kung, S.Y.: A new identification and model reduction algorithm via singular value decomposition. In: Proceedings of the 12th Asilomar Conference on Circuits, Systems, and Computers, pp. 705–714
Lanczos, C.: Applied Analysis. Dover Publications, New York (1988)
Markovsky, I., Van Huffel, S.: Overview of total least squares methods. Signal Process. 87(10), 2283–2302 (2007)
Martinsson, P.G., Rokhlin, V., Tygert, M.: A randomized algorithm for the decomposition of matrices. Appl. Comput. Harmonic Anal. 30(1), 47–68 (2011)
Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)
Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mech. 45, 357–378 (2013)
Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)
Noack, B.R., Afanasiev, K., Morzynski, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)
Proctor, J.L., Eckhoff, P.A.: Discovering dynamic patterns from infectious disease data using dynamic mode decomposition. Int. Health 7(2), 139–145 (2015)
Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)
Schmid, P.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)
Schmid, P.: Application of the dynamic mode decomposition to experimental data. Exp. Fluids 50, 1123–1130 (2011)
Schmid, P., Li, L., Juniper, M., Pust, O.: Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25, 249–259 (2011)
Schmid, P., Sesterhenn, J.: Dynamic mode decomposition of numerical and experimental data. In: 61st Annual Meeting of the APS Division of Fluid Dynamics (2008)
Semeraro, O., Bellani, G., Lundell, F.: Analysis of time-resolved PIV masurements of a confined turbulent jet using POD and Koopman modes. Exp. Fluids 53, 1203–1220 (2012)
Sima, D.M., Van Huffel, S.: Level choice in truncated total least squares. Comput. Stat. Data Anal. 52(2), 1103–1118 (2007)
Timmins, B.H., Wilson, B.W., Smith, B.L., Vlachos, P.P.: A method for automatic estimation of instantaneous local uncertainty in particle image velocimetry measurements. Exp. Fluids 53(4), 1133–1147 (2012)
Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014)
Van Huffel, S., Vandewalle, J.: On the accuracy of total least squares and least squares techniques in the presence of errors on all data. Automatica 25(5), 765–769 (1989)
Van Huffel, S., Vandewalle, J.: The total least squares problem: computational aspects and analysis. In: Frontiers in Applied Mathematics, vol. 9. SIAM, Philadelphia, PA (1991). doi:10.1137/1.9781611971002
von Neumann, J.: Proof of the quasi-ergodic hypothesis. Proc. Natl. Acad. Sci. 18, 70–82 (1932)
Wieneke, B.: PIV uncertainty quantification from correlation statistics. Meas. Sci. Technol. 26, 074002 (2015)
Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear. Sci. 25(6), 1307–1346 (2015)
Williams, M.O., Rowley, C.W., Kevrekidis, I.G.: A kernel-based method for data-driven Koopman spectral analysis. J. Comput. Dyn. 2(2), 247–265 (2015)
Wilson, B.M., Smith, B.L.: Uncertainty on piv mean and fluctuating velocity due to bias and random errors. Meas. Sci. Technol. 24(3), 035,302 (2013)
Wynn, A., Pearson, D., Ganapathisubramani, B., Goulart, P.: Optimal mode decomposition for unsteady flows. J. Fluid Mech. 733, 473–503 (2013)
Zoltowski, M.D.: Generalized minimum norm and constrained total least squares with applications to array signal processing. Proc. SPIE 975, 78–85 (1988)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Oleg V. Vasilyev.
This work was supported by the Air Force Office of Scientific Research under Grant FA9550-14-1-0289 and the Office of Naval Research under MURI Grant 00014-14-1-0533. M.S.H. gratefully acknowledges support from the Department of Aerospace Engineering and Mechanics at the University of Minnesota.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Hemati, M.S., Rowley, C.W., Deem, E.A. et al. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets . Theor. Comput. Fluid Dyn. 31, 349–368 (2017). https://doi.org/10.1007/s00162-017-0432-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00162-017-0432-2