[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Cohesive powers of structures

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

A cohesive power of a structure is an effective analog of the classical ultrapower of a structure. We start with a computable structure, and consider its effective power over a cohesive set of natural numbers. A cohesive set is an infinite set of natural numbers that is indecomposable with respect to computably enumerable sets. It plays the role of an ultrafilter, and the elements of a cohesive power are the equivalence classes of certain partial computable functions determined by the cohesive set. Thus, unlike many classical ultrapowers, a cohesive power is a countable structure. In this paper we focus on cohesive powers of graphs, equivalence structures, and computable structures with a single unary function satisfying various properties, which can also be viewed as directed graphs. For these computable structures, we investigate the isomorphism types of their cohesive powers, as well as the properties of cohesive powers when they are not isomorphic to the original structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash, C., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy. Elsevier, Amsterdam (2000)

    Google Scholar 

  2. Blass, A.: A model without ultrafilters. Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques 25(4), 329–331 (1977)

    MathSciNet  Google Scholar 

  3. Calvert, W., Cenzer, D., Harizanov, V.: Densely computable structures. J. Log. Comput. 32, 581–607 (2022)

    Article  MathSciNet  Google Scholar 

  4. Calvert, W., Cenzer, D., Harizanov, V., Morozov, A.: Effective categoricity of equivalence structures. Ann. Pure Appl. Logic 141, 61–78 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cenzer, D., Harizanov, V., Remmel, J.B.: Computability-theoretic properties of injection structures. Algebra Logic 53, 39–69 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cenzer, D., Harizanov, V., Remmel, J.B.: Two-to-one structures. J. Log. Comput. 23, 1195–1223 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1990)

    Google Scholar 

  8. Cooper, S.B.: Computability Theory. CRC Press, Boca Raton (2004)

    Google Scholar 

  9. Csima, B.F., Khoussainov, B., Liu, J.: Computable categoricity of graphs with finite components. In: Logic and Theory of Algorithms, CiE 2008, A. Beckmann, C. Dimitracopoulos, and B. Löwe, editors, Lecture Notes in Computer Science 5028, 139–148 (2008)

  10. Dimitrov, R.D.: Quasimaximality and principal filters isomorphism between \({\cal{E} }^{ \ast }\) and \({\cal{L} }^{ \ast } (V_{\infty })\). Arch. Math. Logic 43, 415–424 (2004)

    Article  MathSciNet  Google Scholar 

  11. Dimitrov, R.D.: Cohesive powers of computable structures, Annuare de l’Université de Sofia “St. Kliment Ohridski’’. Faculté de Mathématiques et Informatique 99, 193–201 (2009)

    Google Scholar 

  12. Dimitrov, R.D.: Extensions of certain partial automorphisms of \({\cal{L} }^{ \ast } (V_{\infty })\), Annuare de l’Université de Sofia “St. Kliment Ohridski’’. Faculté de Mathématiques et Informatique 99, 183–191 (2009)

    Google Scholar 

  13. Dimitrov, R.D., Harizanov, V.: Effective ultrapowers and applications. In: Aspects of Computation and Automata Theory with Applications, N. Greenberg, S. Jain, K.M. Ng, S. Schewe, F. Stephan, G. Wu, Y. Yang, eds., IMS, National University of Singapore, LNS vol. 42, World Scientific, 201–221 (2023)

  14. Dimitrov, R.D., Harizanov, V.: Countable nonstandard models: following Skolem’s approach. In: Sriraman, B. (ed.) Handbook of the History and Philosophy of Mathematical Practice. Springer (to appear)

  15. Dimitrov, R.D., Harizanov, V.: Orbits of maximal vector spaces. Algebra Logic 54, 440–477 (2016)

  16. Dimitrov, R., Harizanov, V., Miller, R., Mourad, K.J.: Isomorphisms of non-standard fields and Ash’s conjecture. In: 10th Conference on Computability in Europe, A. Beckmann, E. Csuhaj-Varjú, and K. Meer, editors, Lecture Notes in Computer Science 8493 (2014), Springer, pp. 143–152

  17. Dimitrov, R., Harizanov, V., Morozov, A., Shafer, P., Soskova, A.A., Vatev, S.V.: On cohesive powers of linear orders. J. Symb. Log. 88, 947–1004 (2023)

    Article  MathSciNet  Google Scholar 

  18. Dimitrov, R., Harizanov, V., Morozov, A., Shafer, P., Soskova, A., Vatev, S.: Cohesive powers of linear orders. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds.) Computing with Foresight and Industry, pp. 168–180. Springer, Computability in Europe, Durham, UK (2019)

  19. Downey, R.G., Remmel, J.B.: Computable algebras and closure systems: coding properties. In: Ershov, Yu.L., Goncharov, S.S., Nerode, A., Remmel, J.B. (eds.) Handbook of Recursive Mathematics, vol. 2, pp. 977–1039. Elsevier, Amsterdam (1998)

  20. Feferman, S., Scott, D.S., Tennenbaum, S.: Models of arithmetic through function rings, Notices of the American Mathematical Society 6 (1959), pp. 173–174. Abstract #556-31

  21. Fokina, E., Harizanov, V., Melnikov, A.: Computable model theory. In: Turing’s Legacy: Developments from Turing’s Ideas in Logic, R. Downey, editor, Lecture Notes in Logic 42, Cambridge University Press (2014), pp. 124–194

  22. Frayne, T., Morel, A.C., Scott, D.S.: Reduced direct products. Fundam. Math. 51, 195–228 (1962)

    Article  MathSciNet  Google Scholar 

  23. Harizanov, V., Srinivasan, K.: Effective ultrapowers of graphs and other structures, accepted for publication in Contemporary Mathematics

  24. Hirschfeld, J.: Models of arithmetic and recursive functions. Israel J. Math. 20, 111–126 (1975)

    Article  MathSciNet  Google Scholar 

  25. Hirschfeld, J., Wheeler, W.H.: Forcing, arithmetic, division rings. Lecture Notes in Mathematics, vol. 454. Springer, Berlin (1975)

  26. Lerman, M.: Recursive functions modulo co-\(r\)-maximal sets. Trans. Am. Math. Soc. 148, 429–444 (1970)

    MathSciNet  Google Scholar 

  27. Marshall, L.: Computability-Theoretic Properties of Partial Injections, Trees, and Nested Equivalences, PhD dissertation, George Washington University, 2015

  28. McLaughlin, T.G.: Some extension and rearrangement theorems for Nerode semirings. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35, 197–209 (1989)

  29. McLaughlin, T.G.: Sub-arithmetical ultrapowers: a survey. Ann. Pure Appl. Logic 49, 143–191 (1990)

  30. McLaughlin, T.G.: \( \Delta _{1}\) ultrapowers are totally rigid. Arch. Math. Logic 46, 379–384 (2007)

  31. Nelson, G.C.: Constructive ultraproducts and isomorphisms of recursively saturated ultrapowers. Notre Dame J. Formal Logic 33, 433–441 (1992)

    Article  MathSciNet  Google Scholar 

  32. Soare, R.I.: Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets. Springer-Verlag, Berlin (1987)

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of FRG NSF Grant DMS-2152095. The authors are also grateful to the anonymous referees for helpfull suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The authors are listed lexicographically, indicating equal contribution to the paper.

Corresponding author

Correspondence to Valentina Harizanov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harizanov, V., Srinivasan, K. Cohesive powers of structures. Arch. Math. Logic 63, 679–702 (2024). https://doi.org/10.1007/s00153-024-00916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-024-00916-7

Keywords

Mathematics Subject Classification

Navigation