[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On uncountable hypersimple unidimensional theories

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We extend the dichotomy between 1-basedness and supersimplicity proved in Shami (J Lond Math Soc 83(2):309–332, 2011). The generalization we get is to arbitrary language, with no restrictions on the topology [we do not demand type-definabilty of the open set in the definition of essential 1-basedness from Shami (J Lond Math Soc 83(2):309–332, 2011)]. We conclude that every (possibly uncountable) hypersimple unidimensional theory that is not s-essentially 1-based by means of the forking topology is supersimple. We also obtain a strong version of the above dichotomy in the case where the language is countable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Yaacov I., Pillay A., Vassiliev E.: Lovely pairs of models. Ann. Pure Appl. Log. 122, 1–3 (2003)

    Article  MathSciNet  Google Scholar 

  2. Hrushovski, E.: Countable unidimensional stable theories are superstable. Unpublished paper

  3. Hrushovski E.: Unidimensional theories are superstable. Ann. Pure Appl. Log. 50, 117–138 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hart B., Kim B., Pillay A.: Coordinatization and canonical bases in simple theories. J. Symb. Log. 65, 293–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kim B.: Forking in simple unstable theories. J. Lond. Math. Soc. 57, 257–267 (1998)

    Article  Google Scholar 

  6. Kim B., Pillay A.: Simple theories. Ann. Pure Appl. Log. 88, 149–164 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pillay, A.: On countable simple unidimensional theories. J. Symb. Log. 68(4), 1377–1384 (2003)

    Google Scholar 

  8. Pillay, A.: The extension property is first order in unidimensional simple theories. Unpublished note

  9. Shami Z.: On analyzability in the forking topology for simple theories. Ann. Pure Appl. Log. 142(1–3), 115–124 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shami Z.: Countable hypersimple unidimensional theories. J. Lond. Math. Soc. 83(2), 309–332 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shami Z.: Coordinatization by binding groups and unidimensionality in simple theories. J. Symb. Log. 69(4), 1221–1242 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shami Z.: On Kueker simple theories. J. Symb. Log. 70(1), 216–222 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wagner F.: Some remarks on one-basedness in simple theories. J. Symb. Log. 69(1), 34–38 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziv Shami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shami, Z. On uncountable hypersimple unidimensional theories. Arch. Math. Logic 53, 203–210 (2014). https://doi.org/10.1007/s00153-013-0362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-013-0362-7

Keywords

Mathematics Subject Classification

Navigation