[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Co-analytic mad families and definable wellorders

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We show that the existence of a \({\Pi^1_1}\)-definable mad family is consistent with the existence of a \({\Delta^{1}_{3}}\)-definable well-order of the reals and \({\mathfrak{b}=\mathfrak{c}=\aleph_3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner J.E., Dordal P.: Adjoining dominating functions. J. Symb. Logic. 50(1), 94–101 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brendle, J.: Forcing and the structure of the real line: the Bogotá lectures Lecture notes (2009)

  3. Brendle J., Hrušák M.: Countable Fréchet Boolean groups: an independence result. J. Symb. Logic. 74(3), 1061–1068 (2009)

    Article  MATH  Google Scholar 

  4. Brendle, J., Khomskii, Y.: Mad families constructed from perfect almost disjoint families. J. Symb. Logic (to appear) (2013)

  5. Fischer V., Friedman S.D.: Cardinal characteristics and projective wellorders. Ann. Pure Appl. Logic. 161(7), 916–922 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischer, V., Friedman, S.D., Zdomskyy, L.: Cardinal characteristics, projective wellorders and large continuum. Ann. Pure Appl. Logic 164(7–8), 763–770 (2013)

    Google Scholar 

  7. Fischer V., Friedman S.D., Zdomskyy L.: Projective wellorders and mad families with large continuum. Ann. Pure Appl. Logic 162(11), 853–862 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedman, S.D.: Fine structure and class forcing, vol. 3 of de Gruyter series in logic and its applications. Walter de Gruyte, Berlin (2000)

  9. Friedman S.D., Zdomskyy L.: Projective mad families. Ann. Pure Appl. Logic 161(12), 1581–1587 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harrington L.: Long projective wellorderings. Ann. Math. Logic. 12(1), 1–24 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jech, T.: Set theory. In: Springer Monographs in Mathematics. Springer, Berlin, 2003. The third millennium edition, revised and expanded

  12. Jensen, R.B., Solovay, R.M.: Some applications of almost disjoint sets. In: Mathematical Logic and Foundations of Set Theory (Proc. Intl. Colloq., Jerusalem, 1968), pp. 84–104. North-Holland, Amsterdam (1970)

  13. Kastermans B., Steprāns J., Zhang Y.: Analytic and coanalytic families of almost disjoint functions. J. Symb. Logic. 73(4), 1158–1172 (2008)

    Article  MATH  Google Scholar 

  14. Kunen, K.: Set theory. An introduction to independence proofs, vol. 102 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1980)

  15. Mathias A.R.D.: Happy families. Ann. Math. Logic. 12(1), 59–111 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller A.W.: Infinite combinatorics and definability. Ann. Pure Appl. Logic. 41(2), 179–203 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raghavan D.: Maximal almost disjoint families of functions. Fund. Math. 204(3), 241–282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Törnquist, A.:\({\Sigma^1_2}\) and \({\Pi^1_1}\) mad families. J. Symb. Logic (to appear)(2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Khomskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, V., Friedman, S.D. & Khomskii, Y. Co-analytic mad families and definable wellorders. Arch. Math. Logic 52, 809–822 (2013). https://doi.org/10.1007/s00153-013-0345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-013-0345-8

Keywords

Mathematics Subject Classification (2000)

Navigation