Abstract
We show that the existence of a \({\Pi^1_1}\)-definable mad family is consistent with the existence of a \({\Delta^{1}_{3}}\)-definable well-order of the reals and \({\mathfrak{b}=\mathfrak{c}=\aleph_3}\).
Similar content being viewed by others
References
Baumgartner J.E., Dordal P.: Adjoining dominating functions. J. Symb. Logic. 50(1), 94–101 (1985)
Brendle, J.: Forcing and the structure of the real line: the Bogotá lectures Lecture notes (2009)
Brendle J., Hrušák M.: Countable Fréchet Boolean groups: an independence result. J. Symb. Logic. 74(3), 1061–1068 (2009)
Brendle, J., Khomskii, Y.: Mad families constructed from perfect almost disjoint families. J. Symb. Logic (to appear) (2013)
Fischer V., Friedman S.D.: Cardinal characteristics and projective wellorders. Ann. Pure Appl. Logic. 161(7), 916–922 (2010)
Fischer, V., Friedman, S.D., Zdomskyy, L.: Cardinal characteristics, projective wellorders and large continuum. Ann. Pure Appl. Logic 164(7–8), 763–770 (2013)
Fischer V., Friedman S.D., Zdomskyy L.: Projective wellorders and mad families with large continuum. Ann. Pure Appl. Logic 162(11), 853–862 (2011)
Friedman, S.D.: Fine structure and class forcing, vol. 3 of de Gruyter series in logic and its applications. Walter de Gruyte, Berlin (2000)
Friedman S.D., Zdomskyy L.: Projective mad families. Ann. Pure Appl. Logic 161(12), 1581–1587 (2010)
Harrington L.: Long projective wellorderings. Ann. Math. Logic. 12(1), 1–24 (1977)
Jech, T.: Set theory. In: Springer Monographs in Mathematics. Springer, Berlin, 2003. The third millennium edition, revised and expanded
Jensen, R.B., Solovay, R.M.: Some applications of almost disjoint sets. In: Mathematical Logic and Foundations of Set Theory (Proc. Intl. Colloq., Jerusalem, 1968), pp. 84–104. North-Holland, Amsterdam (1970)
Kastermans B., Steprāns J., Zhang Y.: Analytic and coanalytic families of almost disjoint functions. J. Symb. Logic. 73(4), 1158–1172 (2008)
Kunen, K.: Set theory. An introduction to independence proofs, vol. 102 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1980)
Mathias A.R.D.: Happy families. Ann. Math. Logic. 12(1), 59–111 (1977)
Miller A.W.: Infinite combinatorics and definability. Ann. Pure Appl. Logic. 41(2), 179–203 (1989)
Raghavan D.: Maximal almost disjoint families of functions. Fund. Math. 204(3), 241–282 (2009)
Törnquist, A.:\({\Sigma^1_2}\) and \({\Pi^1_1}\) mad families. J. Symb. Logic (to appear)(2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fischer, V., Friedman, S.D. & Khomskii, Y. Co-analytic mad families and definable wellorders. Arch. Math. Logic 52, 809–822 (2013). https://doi.org/10.1007/s00153-013-0345-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-013-0345-8