[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Scales of minimal complexity in \({K(\mathbb{R})}\)

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Using a Levy hierarchy and a fine structure theory for \({K(\mathbb{R})}\) , we obtain scales of minimal complexity in this inner model. Each such scale is obtained assuming the determinacy of only those sets of reals whose complexity is strictly below that of the scale constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cunningham, D.W.: The real core model and its scales. Ann. Pure Appl. Logic 72(3), 213–289 (1995). doi:10.1016/0168-0072(94)00023-V

  2. Cunningham, D.W.: The fine structure of real mice. J. Symb. Logic 63(3), 937–994 (1998). doi:10.2307/2586721

    Google Scholar 

  3. Cunningham, D.W.: Is there a set of reals not in \({K(\mathbb{R})}\)? Ann. Pure Appl. Logic 92(2), 161–210 (1998). doi:10.1016/S0168-0072(98)00003-7

  4. Cunningham, D.W.: Scales and the fine structure of \({K(\mathbb{R})}\). Part I: acceptability above the reals. Mathematics ArXiv (2006). http://front.math.ucdavis.edu/math.LO/0605445

  5. Cunningham, D.W.: Scales and the fine structure of \({K(\mathbb{R})}\). Part II: Weak real mice and scales. Mathematics ArXiv (2006). http://front.math.ucdavis.edu/math.LO/0605448

  6. Dodd A.J.: The core model, London Mathematical Society Lecture Note Series, vol. 61. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  7. Dodd, A.J., Jensen, R.B.: The core model. Ann. Math. Logic 20(1), 43–75 (1981). doi:10.1016/0003-4843(81)90011-5

    Google Scholar 

  8. Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4, 229–308; erratum, ibid. 4 (1972), 443 (1972). With a section by Jack Silver

  9. Kanamori A.: The Higher Infinite. Perspectives in Mathematical Logic. Springer, Berlin (1994)

    Google Scholar 

  10. Martin, D.A.: The largest countable this, that, and the other. In: Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, pp. 97–106. Springer, Berlin (1983). doi:10.1007/BFb0071698

  11. Moschovakis Y.N.: Descriptive Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 100. North-Holland Publishing Co., Amsterdam (1980)

    Google Scholar 

  12. Steel, J.R.: Scales in \({L(\mathbb{R})}\) . In: Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, pp. 107–156. Springer, Berlin (1983). doi:10.1007/BFb0071699

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Cunningham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunningham, D.W. Scales of minimal complexity in \({K(\mathbb{R})}\) . Arch. Math. Logic 51, 319–351 (2012). https://doi.org/10.1007/s00153-012-0267-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-012-0267-x

Keywords

Mathematics Subject Classification (2000)

Navigation