Abstract
Using a Levy hierarchy and a fine structure theory for \({K(\mathbb{R})}\) , we obtain scales of minimal complexity in this inner model. Each such scale is obtained assuming the determinacy of only those sets of reals whose complexity is strictly below that of the scale constructed.
Similar content being viewed by others
References
Cunningham, D.W.: The real core model and its scales. Ann. Pure Appl. Logic 72(3), 213–289 (1995). doi:10.1016/0168-0072(94)00023-V
Cunningham, D.W.: The fine structure of real mice. J. Symb. Logic 63(3), 937–994 (1998). doi:10.2307/2586721
Cunningham, D.W.: Is there a set of reals not in \({K(\mathbb{R})}\)? Ann. Pure Appl. Logic 92(2), 161–210 (1998). doi:10.1016/S0168-0072(98)00003-7
Cunningham, D.W.: Scales and the fine structure of \({K(\mathbb{R})}\). Part I: acceptability above the reals. Mathematics ArXiv (2006). http://front.math.ucdavis.edu/math.LO/0605445
Cunningham, D.W.: Scales and the fine structure of \({K(\mathbb{R})}\). Part II: Weak real mice and scales. Mathematics ArXiv (2006). http://front.math.ucdavis.edu/math.LO/0605448
Dodd A.J.: The core model, London Mathematical Society Lecture Note Series, vol. 61. Cambridge University Press, Cambridge (1982)
Dodd, A.J., Jensen, R.B.: The core model. Ann. Math. Logic 20(1), 43–75 (1981). doi:10.1016/0003-4843(81)90011-5
Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4, 229–308; erratum, ibid. 4 (1972), 443 (1972). With a section by Jack Silver
Kanamori A.: The Higher Infinite. Perspectives in Mathematical Logic. Springer, Berlin (1994)
Martin, D.A.: The largest countable this, that, and the other. In: Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, pp. 97–106. Springer, Berlin (1983). doi:10.1007/BFb0071698
Moschovakis Y.N.: Descriptive Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 100. North-Holland Publishing Co., Amsterdam (1980)
Steel, J.R.: Scales in \({L(\mathbb{R})}\) . In: Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, pp. 107–156. Springer, Berlin (1983). doi:10.1007/BFb0071699
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cunningham, D.W. Scales of minimal complexity in \({K(\mathbb{R})}\) . Arch. Math. Logic 51, 319–351 (2012). https://doi.org/10.1007/s00153-012-0267-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-012-0267-x