[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A comparison of two systems of ordinal notations

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract.

The standard method of generating countable ordinals from uncountable ordinals can be replaced by a use of fixed point extractors available in the term calculus of Howard’s system. This gives a notion of the intrinsic complexity of an ordinal analogous to the intrinsic complexity of a function described in Gödel’s T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczel, P.: Describing ordinals using functionals of transfinite type. J. Symbolic Logic 37, 35–47 (1972)

    MATH  Google Scholar 

  2. Bachmann, H.: Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen. Vierteljahresschr. Naturforsch. Ges. Zürich 95, 115–147 (1950)

    MATH  Google Scholar 

  3. Buchholz, W., Schütte, K.: Proof Theory of Impredicative Subsystems of Analysis. Bibliopolis, Naples, 1998

  4. Crossley, J.N., Bridge Kister, J.: Natural well-orderings. Arch. math. Logik 26, 57–76 (1986/87)

    Google Scholar 

  5. Danner, N.: Ordinal notations in typed λ-calculi. Ph.D. thesis, Indiana, 1999

  6. Danner, N.: Ordinals and ordinals functions representable in the simply typed λ-calculus. Ann. P. and A. Logic 97, 179–201 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Danner, N., Leivant, D.: Stratified polymorphism and primitive recursion. Math. Struct. Comp. Sci. 9, 507–522 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feferman, S.: Hereditarily replete functionals over the ordinals of Intuitionism and Proof Theory. Buffalo, New York, 1968 (ed.) by A. Kino, J. Myhill, R.E. Vesley, North- Holland, Amsterdam, 1968, pp. 289–301

  9. Fortune, S., Leivant, D., O’Donnell, M.: The expressiveness of simple and second-order type structures. J. Assoc. Comput. Mach. 30, 151–185 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Howard, W.A.: A system of abstract constructive ordinals. J. Symbolic Logic 37, 355–374 (1972)

    MATH  Google Scholar 

  11. Pohlers, W.: Proof Theory. Springer L.N.M 1407, Berlin: Springer-Verlag, 1989

  12. Pohlers, W.: Proof theory and ordinal analysis. Arch. Math. Logic 30, 311–376 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Rathjen, M., Weiermann, A.: Proof-theoretic investigations on Kruskal’s theorem. Ann. Pure Appl. Logic 60, 49–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schütte, K.: Kennzeichnung von Ordnungszahlen durch rekursive erklärte Functionen. Meth. Ann. 127, 15–32 (1954)

    Google Scholar 

  15. Simmons, H.: An applied λ-calculus for iteration templates.

  16. Simmons, H.: Derivatives for ordinal functions and the Schütte brackets.

  17. Simmons, H.: Iteration templates as generalized ordinal notations. http://www.cs.man. ac.uk/∼hsimmons/PUBLICATIONS/abstracts.html

  18. Veblen, O.: Continuous increasing functions of finite and transfinite ordinals. Trans. Amer. Math. Soc. 9, 280–292 (1908)

    MATH  Google Scholar 

  19. Weyhrauch, R.: Relations between some hierarchies of ordinal functions and functionals. Dissertation, Stanford University, 1975

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Simmons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, H. A comparison of two systems of ordinal notations. Arch. Math. Logic 43, 65–83 (2004). https://doi.org/10.1007/s00153-003-0177-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-003-0177-z

Keywords

Navigation