[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Enhanced single-loop method for efficient reliability-based design optimization with complex constraints

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Reliability-based design optimization (RBDO) has been widely implemented for engineering design optimization when considering the uncertainty. The single loop approaches (SLA) are highly efficient but is prone to converge with inappropriate results for highly nonlinear probabilistic constraints. In this paper, a novel RBDO algorithm is proposed based on single loop approach and the enhanced chaos control method, named as enhanced single-loop method (ESM). The performance of SLA is enhanced using an adaptive inverse reliability method with limited number of iterations. The adaptive step size is computed based on a merit function which is computed using the results of the new and previous iterations. The iterations of the probabilistic constraints of RBDO models are manually controlled in the range from 1 to 10 in ESM. The efficiency and accuracy of the ESM are compared through four nonlinear RBDO problems with complex constraints, including a nonlinear mathematical problem, two engineering problems and a practical complex stiffened panel example with complex buckling constraint for aircraft design. Results illustrate that the proposed ESM is more efficient and robust than the performance measure approach and reliability index approach for RBDO problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

d :

design variables.

E :

Young’s modulus.

f :

objective function.

f X (x):

joint probability density function of the basic random variables.

g(X):

limit state function.

h :

stiffener height.

\( \tilde{\boldsymbol{n}} \) :

enhanced search direction.

NI :

total number of iterations.

P cr :

critical buckling load.

P f :

failure probability.

\( {\boldsymbol{s}}_k^j \) :

shift vector of the j th probabilistic constraint at the k th cycle.

t :

skin thickness.

t c :

stiffener thickness.

U :

independent standard normal random variable.

U :

most probable failure point.

W :

structural weight.

X :

random variables.

α :

normalized steepest descent direction.

α j :

normalized sensitivities vector.

β :

reliability index.

\( {\beta}_t^j \) :

prescribed reliability index.

λ :

chaos control factor.

σ x :

standard deviation.

δ :

adaptive step size.

ρ :

density.

υ :

Poisson’s ratio.

Φ :

standard normal cumulative distribution function.

μ :

mean value.

References

  • Aoues Y, Chateauneuf A (2010) Benchmark study of numerical methods for reliability-based design optimization. Struct Multidiscip Optim 41(2):277–294

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Hasselman TK, Neill DJ (1997) Reliability based structural design optimization for practical applications. In : 38th Structures, structural dynamics, and materials conference

  • Chen Z, Qiu H, Gao L, Su L, Li P (2013) An adaptive decoupling approach for reliability-based design optimization. Comput Struct 117:58–66

    Article  Google Scholar 

  • Cho TM, Lee BC (2010) Reliability-based design optimization using a family of methods of moving asymptotes. Struct Multidiscip Optim 42:255–268

    Article  Google Scholar 

  • Cho TM, Lee BC (2011) Reliability-based design optimization using convex linearization and sequential optimization and reliability assessment method. Struct Saf 33(1):42–50

    Article  MathSciNet  Google Scholar 

  • Du X, Chen W (2004) Sequential optimization and reliability assessment method for efficient probabilistic design. J Mech Des 126(2):225–233

    Article  Google Scholar 

  • Ezzati G, Mammadov M, Kulkarni S (2015) A new reliability analysis method based on the conjugate gradient direction. Struct Multidiscip Optim 51(1):89–98

    Article  MathSciNet  Google Scholar 

  • Hao P, Wang B, Li G, Meng Z, Wang L (2015) Hybrid framework for reliability-based design optimization of imperfect stiffened shells. AIAA J 53:2878–2889

    Article  Google Scholar 

  • Hao P, Wang B, Tian K et al (2016) Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners. AIAA J 54(4):1350–1363

    Article  Google Scholar 

  • Hao P, Wang Y, Liu C et al (2017a) A novel non-probabilistic reliability-based design optimization algorithm using enhanced chaos control method. Comput Methods Appl Mech Eng 318:572–593

    Article  MathSciNet  Google Scholar 

  • Hao P, Wang Y, Liu X et al (2017b) An efficient adaptive-loop method for non-probabilistic reliability-based design optimization. Comput Methods Appl Mech Eng 324:689–711

    Article  MathSciNet  Google Scholar 

  • Hao P, Yuan X, Liu H et al (2017c) Isogeometric buckling analysis of composite variable-stiffness panels. Compos Struct 165:192–208

    Article  Google Scholar 

  • Hasofer AM, Lind NC (1974) Exact and invariant second moment code format. J Eng Mech Div ASCE 100(1):111–121

    Google Scholar 

  • Gu L, Yang RJ, Tho H et al (2001) Optimization and robustness for crashworthiness of side impact. Int J Veh Des 26(4):348–360

    Article  Google Scholar 

  • Jiang Z, Chen W, Fu Y et al (2013) Reliability-based design optimization with model bias and data uncertainty. Int J Mater Manuf 6(2013–01-1384):502–516

    Article  Google Scholar 

  • Keshtegar B (2016) Chaotic conjugate stability transformation method for structural reliability analysis. Comput Methods Appl Mech Eng 310:866–885

    Article  MathSciNet  Google Scholar 

  • Keshtegar B (2017a) A modified mean value of performance measure approach for reliability-based design optimization. Arab J Sci Eng 42:1093–1101

    Article  Google Scholar 

  • Keshtegar B (2017b) A hybrid conjugate finite-step length method for robust and efficient reliability analysis. Appl Math Model 45:226–237

    Article  MathSciNet  Google Scholar 

  • Keshtegar B (2017c) Enriched FR conjugate search directions for robust and efficient structural reliability analysis. Eng Comput:1–12. https://doi.org/10.1007/s00366-017-0524-z

  • Keshtegar B, Kisi O (2017) M5 model tree and Monte Carlo simulation for efficient structural reliability analysis. Appl Math Model

  • Keshtegar B, Meng Z (2017) A hybrid relaxed first-order reliability method for efficient structural reliability analysis. Struct Saf 66:84–93

    Article  Google Scholar 

  • Keshtegar B, Hao P (2016) A hybrid loop approach using the sufficient descent condition for accurate, robust, and efficient reliability-based design optimization. J Mech Des 138:121401

    Article  Google Scholar 

  • Keshtegar B, Hao P (2017) A hybrid self-adjusted mean value method for reliability-based design optimization using sufficient descent condition. Appl Math Model 41:257–270

    Article  MathSciNet  Google Scholar 

  • Keshtegar B, Hao P, Meng Z (2017a) A self-adaptive modified chaos control method for reliability-based design optimization. Struct Multidiscip Optim 55:63–75

    Article  MathSciNet  Google Scholar 

  • Keshtegar B, Hao P, Wang Y, Li Y (2017b) Optimum design of aircraft panels based on adaptive dynamic harmony search. Thin-Walled Struct 118:37–45

    Article  Google Scholar 

  • Keshtegar B, Baharom S, El-Shafie A (2017c) Self-adaptive conjugate method for a robust and efficient performance measure approach of reliability-based design optimization. Eng Comput. https://doi.org/10.1007/s00366-017-0529-7

  • Keshtegar B, Lee I (2016) Relaxed performance measure approach for reliability-based design optimization. Struct Multidiscip Optim 54:1439–1454

    Article  MathSciNet  Google Scholar 

  • Keshtegar B, Miri M (2014) Introducing Conjugate gradient optimization for modified HL-RF method. Eng Comput 31(4):775–790

    Article  Google Scholar 

  • Keshtegar B, Chakraborty S (2018) A hybrid self-adaptive conjugate first order reliability method for robust structural reliability analysis. Appl. Math. Model. 53:319–332.

  • Lee JJ, Lee BC (2005) Efficient evaluation of probabilistic constraints using an envelope function. Eng Optim 37(2):185–200

    Article  Google Scholar 

  • Lee JO, Yang YS, Ruy WS (2002) A comparative study on reliability-index and target performance- based probabilistic structural design optimization. Comput Struct 80:257–269

    Article  Google Scholar 

  • Li G, Fang Y, Hao P et al (2017a) Three-point bending deflection and failure mechanism map of sandwich beams with second-order hierarchical corrugated truss core. J Sandw Struct Mater 19:83–107

    Article  Google Scholar 

  • Li G, Li Z, Hao P, et al. (2017b) Failure behavior of hierarchical corrugated sandwich structures with second-order core based on Mindlin plate theory. J Sandw Struct Mater

  • Liang J, Mourelatos ZP, Tu J (2008) A single-loop method for reliability-based design optimization. Int J Prod Dev 5:76–92

    Article  Google Scholar 

  • Melchers RE (1999) Structural Reliability Analysis and Prediction. Wiley, New York

    Google Scholar 

  • Meng Z, Li G, Wang BP, Hao P (2015) A hybrid chaos control approach of the performance measure functions for reliability-based design optimization. Comput Struct 146:32–43

    Article  Google Scholar 

  • Meng Z, Zhou HL, Li G et al (2016) A decoupled approach for non-probabilistic reliability-based design optimization. Comput Struct 175(10):65–73

    Article  Google Scholar 

  • Meng Z, Li G, Yang D et al (2017a) A new directional stability transformation method of chaos control for first order reliability analysis. Struct Multidiscip Optim 55(2):601–612

    Article  MathSciNet  Google Scholar 

  • Meng Z, Yang D, Zhou H et al (2017b) An accurate and efficient reliability-based design optimization using the second order reliability method and improved stability transformation method. Eng Optim 2017:1–17

    Google Scholar 

  • Meng Z, Yang D, Zhou H, et al. (2017c) Convergence control of single loop approach for reliability-based design optimization. Struct Multidiscip Optim

  • Nikolaidis E, Burdisso R (1988) Reliability-based optimization: a safety index approach. Comput Struct 28:781–788

    Article  MATH  Google Scholar 

  • Rackwitz R, Fiessler B (1978) Structural reliability under combined random load sequence. Comput Struct 9(5):489–494

    Article  MATH  Google Scholar 

  • Shi ZJ, Wang S, Xu Z (2010) The convergence of conjugate gradient method with nonmonotone line search. Appl Math Comput 217:1921–1932

    MathSciNet  MATH  Google Scholar 

  • Shiyekar S, Norris A, Bird RK, et al. (2011) Design, optimization, and evaluation of integrally-stiffened Al-2139 panel with curved stiffeners. National Aeronautics and Space Administration, Langley Research Center

  • Tu J, Choi KK, Park YH (1999) A new study on reliability-based design optimization. J Mech Des 121(4):557–564

    Article  Google Scholar 

  • Wang B, Hao P, Li G et al (2014) Generatrix shape optimization of stiffened shells for low imperfection sensitivity. Sci China Technol Sci 57(10):2012–2019

    Article  Google Scholar 

  • Wu YT, Millwater HR, Cruse TA (1990) Advanced probabilistic structural analysis method for implicit performance functions. AIAA J 28(9):1663–1669

    Article  Google Scholar 

  • Youn BD, Choi KK (2004) A new response surface methodology for reliability-based design optimization. Comput Struct 82(2–3):241–256

    Article  Google Scholar 

  • Youn BD, Choi KK, Du L (2005a) Adaptive probability analysis using an enhanced hybrid mean value method. Struct Multidiscip Optim 29(2):134–148

    Article  Google Scholar 

  • Youn BD, Choi KK, Du L (2005b) Enriched performance measure approach for reliability-based design optimization. AIAA J 43(4):874–884

    Article  Google Scholar 

  • Youn BD, Choi KK, Park YH (2003) Hybrid analysis method for reliability-based design optimization. J Mech Des 125(2):221–232

    Article  Google Scholar 

  • Yang RJ, Gu L (2004) Experience with approximate reliability-based optimization methods. Struct Multidiscip Optim 26:152–159

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by University of Zabol under Grant No. UOZ-GR-9517-3, National Natural Science Foundation of China under Grant Nos. 11772078 and 11402049, and International Joint Research Project by University of Zabol under Grant No. IR-UOZ96-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Keshtegar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshtegar, B., Hao, P. Enhanced single-loop method for efficient reliability-based design optimization with complex constraints. Struct Multidisc Optim 57, 1731–1747 (2018). https://doi.org/10.1007/s00158-017-1842-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1842-x

Keywords

Navigation