[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Local maximum-entropy based surrogate model and its application to structural reliability analysis

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A novel surrogate model based on the Local Maximum-Entropy (LME) approximation is proposed in this paper. By varying the degrees of locality, the LME-based surrogate model is constructed according to the local behavior of the response function at the prediction points. The proposed method combines the advantages of both local and global approximation schemes. The robustness and effectiveness of the model are systematically investigated by comparing with the conventional surrogate models (such as Polynomial regression, Radial basis function, and Kriging model) in three types of test problems. In addition, the performance of the LME-based surrogate model is evaluated by an industry case of turbine disk reliability analysis (TDRA) involving random geometric parameters. In TDRA, two LME-based surrogate models are built including a 1st surrogate model employed in the sensitivity analysis to determine the key random variables and a 2nd surrogate model utilized in Monte-Carlo Simulations (MCS) to predict the Low Cycle Fatigue (LCF) life of turbine disks. Finally, a model-based Uncertainty Quantification (UQ) analysis is performed to rigorously quantify the uncertainties of the physical system and fidelity of surrogate model predictions simultaneously. Results show that the LME-based surrogate model can achieve a desirable level of accuracy and robustness with reduced number of sample points, which indicates the proposed method possess the potential for approximating highly nonlinear limit state functions and applicable for structural reliability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adams M, Lashgari A, Li B, McKerns M, Mihaly J, Ortiz M, Owhadi H, Rosakis A, Stalzer M, Sullivan T (2012) Rigorous model-based uncertainty quantification with application to terminal ballistics—part ii. systems with uncontrollable inputs and large scatter. J Mech Phys Solids 60(5):1002–1019

    Article  Google Scholar 

  • Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65(13):2167–2202

    Article  MathSciNet  MATH  Google Scholar 

  • Barton RR (1992) Metamodels for simulation input-output relations Proceedings of the 24th conference on Winter simulation. ACM, pp 289–299

  • Birnbaum ZW (1952) Numerical tabulation of the distribution of Kolmogorov’s statistic for finite sample size. J Am Stat Assoc 47(259):425–441

    Article  MathSciNet  MATH  Google Scholar 

  • Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structural reliability problems. Struct Saf 7(1):57–66

    Article  Google Scholar 

  • Das PK, Zheng Y (2000) Cumulative formation of response surface and its use in reliability analysis. Probab Eng Mech 15(4):309–315

    Article  Google Scholar 

  • Deng J (2006) Structural reliability analysis for implicit performance function using radial basis function network. Int J Solids Struct 43(11–12):3255–3291. doi:10.1016/j.ijsolstr.2005.05.055

    Article  MATH  Google Scholar 

  • Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining Kriging and Monte Carlo Simulation. Struct Saf 33(2):145–154. doi:10.1016/j.strusafe.2011.01.002

    Article  Google Scholar 

  • Elhewy AH, Mesbahi E, Pu Y (2006) Reliability analysis of structures using neural network method. Probab Eng Mech 21(1):44–53

    Article  Google Scholar 

  • Fan J, Liao H, Li D, Wang R, Hu D (2017) Probabilistic analysis of turbine disk fatigue life considering geometric uncertainties. J Aerosp Pow 32(1):66–74

    Google Scholar 

  • Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45 (1–3):50–79. doi:10.1016/j.paerosci.2008.11.001

    Article  Google Scholar 

  • Fraternali F, Lorenz CD, Marcelli G (2012) On the estimation of the curvatures and bending rigidity of membrane networks via a local maximum-entropy approach. J Comput Phys 231(2):528–540. doi:10.1016/j.jcp.2011.09.017

    Article  MATH  Google Scholar 

  • Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press

  • González D, Cueto E, Doblaré M (2010) A higher order method based on local maximum entropy approximation. Int J Numer Methods Eng 83(6):741–764. doi:10.1002/nme.2855

    MathSciNet  MATH  Google Scholar 

  • Guan XL, Melchers RE (2001) Effect of response surface parameter variation on structural reliability estimates. Struct Saf 23(4):429–444

    Article  Google Scholar 

  • Guo Z, Bai G (2009) Application of least squares support vector machine for regression to reliability analysis. Chin J Aeronaut 22(2):160–166

    Article  Google Scholar 

  • Guo X, Bai W, Zhang W, Gao X (2009) Confidence structural robust design and optimization under stiffness and load uncertainties. Comput Methods Appl Mech Eng 198(41):3378–3399. doi:10.1016/j.cma.2009.06.018

    Article  MathSciNet  MATH  Google Scholar 

  • Habib M, McDiarmid C, Ramirez-Alfonsin J, Reed B (2013) Probabilistic methods for algorithmic discrete mathematics, vol 16. Springer Science & Business Media

  • Hock W, Schittkowski K (1980) Test examples for nonlinear programming codes. J Optim Theory Appl 30 (1):127–129

    Article  MATH  Google Scholar 

  • Hurtado JE, Alvarez DA (2001) Neural-network-based reliability analysis: a comparative study. Comput Methods Appl Mech Eng 191(1):113–132

    Article  MATH  Google Scholar 

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press

  • Kamga PH, Li B, McKerns M, Nguyen L, Ortiz M, Owhadi H, Sullivan T (2014) Optimal uncertainty quantification with model uncertainty and legacy data. J Mech Phys Solids 72:1–19. doi:10.1016/j.jmps.2014.07.007

    Article  Google Scholar 

  • Kaymaz I, McMahon CA (2005) A response surface method based on weighted regression for structural reliability analysis. Probab Eng Mech 20(1):11–17

    Article  Google Scholar 

  • Kidane A, Lashgari A, Li B, McKerns M, Ortiz M, Owhadi H, Ravichandran G, Stalzer M, Sullivan TJ (2012) Rigorous model-based uncertainty quantification with application to terminal ballistics, part i: Systems with controllable inputs and small scatter 60(5):983–1001. doi:10.1016/j.jmps.2011.12.001

    Google Scholar 

  • Kim SH, Na SW (1997) Response surface method using vector projected sampling points. Struct Saf 19 (1):3–19

    Article  Google Scholar 

  • Kiureghian AD, Dakessian T (1998) Multiple design points in first and second-order reliability. Struct Saf 20(1):37–49. doi:10.1016/S0167-4730(97)00026-X

    Article  Google Scholar 

  • Kochmann DM, Venturini GN (2014) A meshless quasicontinuum method based on local maximum-entropy interpolation. Model Simul Mater Sci Eng 22(3) 034:007. doi:10.1088/0965-0393/22/3/034007

  • Koziel S, Ciaurri DE, Leifsson L (2011) Surrogate-based methods. In: Koziel S, Yang XS (eds) Computational optimization, methods and algorithms, no. 356 in studies in computational intelligence. doi:10.1007/978-3-642-20859-1_3. Springer Berlin Heidelberg, pp 33–59

  • Li B, Habbal F, Ortiz M (2010) Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int J Numer Methods Eng 83(12):1541–1579

    Article  MathSciNet  MATH  Google Scholar 

  • Li J, Wang H, Kim NH (2012) Doubly weighted moving least squares and its application to structural reliability analysis. Struct Multidiscip Optim 46(1):69–82

    Article  Google Scholar 

  • Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402

    Article  Google Scholar 

  • Liu YW, Moses F (1994) A sequential response surface method and its application in the reliability analysis of aircraft structural systems. Struct Saf 16(1-2):39–46

    Article  Google Scholar 

  • Lucas LJ, Owhadi H, Ortiz M (2008) Rigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities. Comput Methods Appl Mech Eng 197(51):4591–4609

    Article  MathSciNet  MATH  Google Scholar 

  • McDiarmid C (1989) On the method of bounded differences. Surv Combinatorics 141(1):148–188

    MathSciNet  MATH  Google Scholar 

  • McDiarmid C (1997) Centering sequences with bounded differences. Comb Probab Comput 6(01):79–86

    Article  MathSciNet  MATH  Google Scholar 

  • Most T (2007) An adaptive response surface approach for structural reliability analyses based on support vector machines Proceedings of the eleventh international conference on civil, structural and environmental engineering computing, BHV Topping

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen XS, Sellier A, Duprat F, Pons G (2009) Adaptive response surface method based on a double weighted regression technique. Probab Eng Mech 24(2):135–143

    Article  Google Scholar 

  • Ortiz A, Puso MA, Sukumar N (2010) Maximum-entropy meshfree method for compressible and near-incompressible elasticity. Comput Methods Appl Mech Eng 199(25–28):1859–1871. doi:10.1016/j.cma.2010.02.013

    Article  MathSciNet  MATH  Google Scholar 

  • Panda SS, Manohar CS (2008) Applications of meta-models in finite element based reliability analysis of engineering structures. Comput Model Eng Sci 28:161–184

    Google Scholar 

  • Papadrakakis M, Papadopoulos V, Lagaros ND (1996) Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng 136(1):145–163

    Article  MATH  Google Scholar 

  • Preparata SM, Franco P (1985) Computational geometry - an introduction | Franco P. Preparata | Springer

  • Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Kevin Tucker P (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1):1–28. doi:10.1016/j.paerosci.2005.02.001

    Article  MATH  Google Scholar 

  • Rajashekhar MR, Ellingwood BR (1993) A new look at the response surface approach for reliability analysis. Struct Saf 12(3):205–220

    Article  Google Scholar 

  • Rosolen A, Arroyo M (2013) Blending isogeometric analysis and local maximum entropy meshfree approximants. Comput Methods Appl Mech Eng 264:95–107. doi:10.1016/j.cma.2013.05.015

    Article  MATH  Google Scholar 

  • Simpson TW, Lin DK, Chen W (2001) Sampling strategies for computer experiments: design and analysis. Int J Reliability Appl 2(3):209–240

    Google Scholar 

  • Song CY, Lee J, Mo Choung J (2011) Reliability-based design optimization of an FPSO riser support using moving least squares response surface meta-models. Ocean Eng 38(2–3):304–318. doi:10.1016/j.oceaneng.2010.11.001

    Article  Google Scholar 

  • Song H, Choi KK, Lee I, Zhao L, Lamb D (2013) Adaptive virtual support vector machine for reliability analysis of high-dimensional problems. Struct Multidiscip Optim 47(4):479–491

    Article  MathSciNet  MATH  Google Scholar 

  • Ullah Z, Coombs WM, Augarde CE (2013) An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems. Comput Methods Appl Mech Eng 267:111–132. doi:10.1016/j.cma.2013.07.018

    Article  MathSciNet  MATH  Google Scholar 

  • Viana FA, Venter G, Balabanov V (2010) An algorithm for fast optimal Latin hypercube design of experiments. Int J Numer Methods Eng 82(2):135–156

    MathSciNet  MATH  Google Scholar 

  • Wild S, Regis R, Shoemaker C (2008) ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J Sci Comput 30(6):3197–3219. doi:10.1137/070691814

    Article  MathSciNet  MATH  Google Scholar 

  • Wong FS (1985) Slope reliability and response surface method. J Geotech Eng 111(1):32–53

    Article  Google Scholar 

  • Wu CT, Young DL, Hong HK (2013) Adaptive meshless local maximum-entropy finite element method for convection–diffusion problems. Comput Mech 53(1):189–200. doi:10.1007/s00466-013-0901-4

    Article  MathSciNet  MATH  Google Scholar 

  • Youn BD, Choi KK (2004) A new response surface methodology for reliability-based design optimization. Commun Strateg 82(2–3):241–256. doi:10.1016/j.compstruc.2003.09.002

    Google Scholar 

  • Zhao L, Choi KK, Lee I (2011) Metamodeling method using dynamic kriging for design optimization. AIAA J 49(9):2034–2046

    Article  Google Scholar 

  • Zhao L, Choi KK, Lee I, Gorsich D (2013) Conservative surrogate model using weighted kriging variance for sampling-based RBDO. J Mech Des 091(9):003

    Google Scholar 

Download references

Acknowledgements

This work is supported by the State Scholarship Fund of China (File No.201506020025), National Natural Science Foundation of China (File No.51275024) and Aviation Science Foundation of China (File No.2014ZB51). The authors are grateful for these supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Lu or Bo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Liao, H., Wang, H. et al. Local maximum-entropy based surrogate model and its application to structural reliability analysis. Struct Multidisc Optim 57, 373–392 (2018). https://doi.org/10.1007/s00158-017-1760-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1760-y

Keywords

Navigation