Abstract
Psychological studies have demonstrated that the facial dynamics play a significant role in recognizing an individual’s identity. This study introduces a novel database (MYFED) and approach for person identification based on facial dynamics, to extract the identity-related information associated with the facial expressions of the six basic emotions (happiness, sadness, surprise, anger, disgust, and fear). Our contribution includes the collection of the MYFED database, featuring facial videos capturing both spontaneous and deliberate expressions of the six basic emotions. The database is uniquely tailored for person identification using facial dynamics of emotional expressions, ensuring an average of ten repetitions for each emotional expression per subject-a characteristic often absent in existing facial expression databases. Additionally, we present a novel person identification method leveraging dynamic features extracted from videos depicting the six basic emotions. Experimental results confirm that dynamic features of all emotional expressions contain identity-related information. Notably, surprise, happiness, and sadness expressions exhibit the highest levels of identity-related data in descending order. To our knowledge, this is the first research that comprehensively analyzes facial expressions of all six basic emotions for person identification. For further research and exploration, the MYFED database is made accessible to researchers via the MYFED database website.
Similar content being viewed by others
Data availability
References
Wang, M., Deng, W.: Deep face recognition: a survey. Neurocomputing 429, 215–244 (2021). https://doi.org/10.1016/j.neucom.2020.10.081
Kortli, Y., Jridi, M., Falou, A.A., Atri, M.: Face recognition systems: A survey. Sensors 20(2), 342
Guo, G., Zhang, N.: A survey on deep learning based face recognition. Comput. Vis. Image Underst. 189, 102805 (2019). https://doi.org/10.1016/j.cviu.2019.102805
Taskiran, M., Kahraman, N., Erdem, C.E.: Face recognition: Past, present and future (a review). Digital Signal Proc. (2020). https://doi.org/10.1016/j.dsp.2020.102809
Yu, Z., Qin, Y., Li, X., Zhao, C., Lei, Z., Zhao, G.: Deep learning for face anti-spoofing: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5609–5631 (2023). https://doi.org/10.1109/TPAMI.2022.3215850
Grm, K., Atruc, V., Artiges, A., Caron, M., Ekenel, H.: Strengths and weaknesses of deep learning models for face recognition against image degradations. IET Biometrics (2017). https://doi.org/10.1049/iet-bmt.2017.0083
Pala, G., Eroglu Erdem, C.: Performance comparison of deep learning based face identification methods for video under adverse conditions. In: 2019 15th International Conference on Signal-Image Technology Internet-Based Systems (SITIS), pp. 90–97 (2019). https://doi.org/10.1109/SITIS.2019.00026
Taskiran, M., Kahraman, N., Erdem, C.E.: Hybrid face recognition under adverse conditions using appearance-based and dynamic features of smile expression. IET Biometrics 10(1), 99–115 (2021). https://doi.org/10.1049/bme2.12006
Dantcheva, A., Br Ãmond, F.: Gender estimation based on smile-dynamics. IEEE Trans. Inform. Forensics Security 12(3), 719–729 (2017). https://doi.org/10.1109/TIFS.2016.2632070
Dibeklioğlu, H., Alnajar, F., Ali Salah, A., Gevers, T.: Combining facial dynamics with appearance for age estimation. IEEE Trans. Image Process. 24(6), 1928–1943 (2015). https://doi.org/10.1109/TIP.2015.2412377
Esmaeili, V., Mohassel Feghhi, M., Shahdi, S.O.: Spotting micro-movements in image sequence by introducing intelligent cubic-LBP. IET Image Proc. 16(14), 3814–3830 (2022). https://doi.org/10.1049/ipr2.12596
Esmaeili, V., Shahdi, S.O.: Automatic micro-expression apex spotting using cubic-LBP. Multimed. Tools Appl. 79, 20221–20239 (2020)
Esmaeili, V., Mohassel Feghhi, M., Shahdi, S.O.: A comprehensive survey on facial micro-expression: approaches and databases. Multimed. Tools Appl. (2022). https://doi.org/10.1007/s11042-022-13133-2
Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 94–101 (2010). https://doi.org/10.1109/CVPRW.2010.5543262
Mavadati, S., Mahoor, M., Bartlett, K., Trinh, P., Cohn, J.: Disfa: A spontaneous facial action intensity database. Aff. Comput. IEEE Trans. 4, 151–160 (2013). https://doi.org/10.1109/T-AFFC.2013.4
Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for facial expression analysis. In: 2005 IEEE International Conference on Multimedia and Expo (2005)
Zhang, X., Yin, L., Cohn, J., Canavan, S., Reale, M., Horowitz, A., Liu, P., Girard, J.: BP4D-spontaneous: A high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32, 692–706 (2014). https://doi.org/10.1016/j.imavis.2014.06.002
Kaulard, K., Cunningham, D., Bülthoff, H., Wallraven, C.: The MPI facial expression database – a validated database of emotional and conversational facial expressions. PLoS One 7 (2012)
Bänziger, T., Mortillaro, M., Scherer, K.: Introducing the geneva multimodal expression corpus for experimental research on emotion perception. Emotion 12, 1161–79 (2011). https://doi.org/10.1037/a0025827
Dhall, A., Goecke, R., Lucey, S., Gedeon, T.: Acted facial expressions in the wild database. Technical report, ANU Computer Science Technical Report Series, TR-CS-11-02 (October 2011)
Happy, S.L., Patnaik, P., Routray, A., Guha, R.: The indian spontaneous expression database for emotion recognition. IEEE Trans. Affect. Comput. 8, 1–1 (2015). https://doi.org/10.1109/TAFFC.2015.2498174
Dibeklioglu, H., Salah, A., Gevers, T.: Are you really smiling at me? spontaneous versus posed enjoyment smiles, pp. 525–538 (2012). https://doi.org/10.1007/978-3-642-33712-3_38
Wallhoff, F., Schuller, B., Hawellek, M., Rigoll, G.: Efficient recognition of authentic dynamic facial expressions on the feedtum database, pp. 493–496 (2006).https://doi.org/10.1109/ICME.2006.262433
Zhalehpour, S., Onder, O., Akhtar, Z., Erdem, C.: Baum-1: A spontaneous audio-visual face database of affective and mental states. IEEE Trans. Aff. Comput. (2016). https://doi.org/10.1109/TAFFC.2016.2553038
Erdem, C., Turan, C., Aydin, Z.: Baum-2: A multilingual audio-visual affective face database. Multimed. Tools Appl. (2014). https://doi.org/10.1007/s11042-014-1986-2
Martin, O., Kotsia, I., Macq, B., Pitas, I.: The enterface’ 05 audio-visual emotion database. In: 22nd International Conference on Data Engineering Workshops (ICDEW’06), pp. 8–8 (2006). https://doi.org/10.1109/ICDEW.2006.145
Taskiran, M., Killioglu, M., Kahraman, N., Erdem, C.E.: Face recognition using dynamic features extracted from smile videos, 1–6 (2019) https://doi.org/10.1109/INISTA.2019.8778400
Thornton, I.M., Kourtzi, Z.: A matching advantage for dynamic human faces. Perception 31(1), 113–132 (2002). https://doi.org/10.1068/p3300
Roark, D.A., Barrett, S.E., Spence, M.J., Abdi, H., O’Toole, A.J.: Memory for moving faces: Psychological and neural perspectives on the role of motion in face recognition. Behav. Cogn. Neurosci. Rev. 2(1), 15–46 (2003). https://doi.org/10.1177/1534582303002001002
Calder, A., Young, A.: Understanding the recognition of facial identity and facial expression. Nat. Rev. Neurosci. 6, 641–651 (2005). https://doi.org/10.1038/nrn1724
Schmidt, K.L., Cohn, J.F.: Dynamics of facial expression: normative characteristics and individual differences, 547–550 (2001) https://doi.org/10.1109/ICME.2001.1237778
Cohn, J.F., Schmidt, K., Gross, R., Ekman, P.: Individual differences in facial expression: stability over time, relation to self-reported emotion, and ability to inform person identification. In: Proceedings. Fourth IEEE International Conference on Multimodal Interfaces, pp. 491–496 (2002). https://doi.org/10.1109/ICMI.2002.1167045
Hadid, A., Pietikäinen, M.: An experimental investigation about the integration of facial dynamics in video-based face recognition. ELCVIA : Electronic Letters on Computer Vision and Image Analysis; Vol.: 5 Núm.: 1 5 (2005) https://doi.org/10.5565/rev/elcvia.80
Tulyakov, S., Slowe, T., Zhang, Z., Govindaraju, V.: Facial expression biometrics using tracker displacement features. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–5 (2007)
Paleari, M., Velardo, C., Huet, B., Dugelay, J.: Face dynamics for biometric people recognition. In: 2009 IEEE International Workshop on Multimedia Signal Processing, pp. 1–5 (2009). https://doi.org/10.1109/MMSP.2009.5293300
Matta, F., Dugelay, J.: Person recognition using facial video information: A state of the art. J. Visual Langu. Comput. 20, 180–187 (2009). https://doi.org/10.1016/j.jvlc.2009.01.002
Zafeiriou, S., Pantic, M.: Facial behaviometrics: The case of facial deformation in spontaneous smile/laughter. In: CVPR 2011 WORKSHOPS, pp. 13–19 (2011)
Ning, Y., Sim, T.: Smile, you’re on identity camera. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4 (2008). https://doi.org/10.1109/ICPR.2008.4761850
Kim, S.T., Kim, D.H., Ro, Y.M.: Facial dynamic modelling using long short-term memory network: Analysis and application to face authentication. In: IEEE Int. Conf. Biometrics Theory, Appl. Syst., (2016)
Haamer, R.E., Kulkarni, K., Imanpour, N., al.: Changes in facial expression as biometric: A database and benchmarks of identification. In: IEEE Int. Conf. Automatic Face and Gesture Recognition (FG), pp. 621–628 (2018)
Usman, S.: Facial micro-expressions as a soft biometric for person recognition. Pattern Recogn. Lett. 143, 95–103 (2021). https://doi.org/10.1016/j.patrec.2020.12.021
Kim, S.T., Ro, Y.M.: Attended relation feature representation of facial dynamics for facial authentication. IEEE Trans. Inf. Forensics Secur. 14(7), 1768–1778 (2019)
Zuheng, M., Junshi, X., Muhammad, M.L., Jean-Christophe, B., Kaixing, Z.: Dynamic Multi-Task Learning for Face Recognition with Facial Expression (2019)
Gavrilescu, M.: Study on using individual differences in facial expressions for a face recognition system immune to spoofing attacks. IET Biometrics 5, 236–242 (2016)
Kashyap, A.L., Tulyakov, S., Govindaraju, V.: Facial behavior as a soft biometric. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 147–151 (2012). https://doi.org/10.1109/ICB.2012.6199772
Weber, R., Soladié, C., Seguier, R.: A survey on databases for facial expression analysis. In: Proc. of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, vol. 5, pp. 73–84 (2018). https://doi.org/10.5220/0006553900730084
Pfister, T., Xiaobai, L., Zhao, G., Pietikainen, M.: Differentiating spontaneous from posed facial expressions within a generic facial expression recognition framework. In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference, pp. 868–875 (2011)
Haq, S., Jackson, P.J.B.: Speaker-dependent audio-visual emotion recognition. In: Proc. Int’l Conf. on Auditory-Visual Speech Processing, pp. 53–58 (2009)
Douglas-Cowie, E., Cowie, R., Schoder, M.: A new emotion database: Considerations, sources and scope. In: Proc. ISCA ITRW Speech Emotion, pp. 39–44 (2000)
Mckeown, G., Valstar, M.F., Cowie, R., Pantic, M., Schroeder, M.: The semaine database: Annotated multimodal records of emotionally coloured conversations between a person and a limited agent. IEEE Trans. Affective Comput. 3(1), 5–17
Busso, C., Bulut, M., Lee, V., Kazemzadeh, A., Mower, E., Kim, S., Chang, J.N., Lee, S., Narayanan, S.S.: Iemocap: Interactive emotional dyadic motion capture database. J. Language Resources Eval. 42(4), 335–359
Design, B.: What’s New! https://www.blackmagicdesign.com/products/davinciresolve/
Singh, S., Prasad, S.: Techniques and challenges of face recognition: A critical review. Procedia Comput. Sci. 143, 536–543 (2018). https://doi.org/10.1016/j.procs.2018.10.427
Saragih, J.M., Lucey, S., Cohn, J.F.: Deformable model fitting by regularized landmark mean-shift. Int. J. Comput. Vision 91(2), 200–215 (2011). https://doi.org/10.1007/s11263-010-0380-4
Wu, Y., Ji, Q.: Facial landmark detection: A literature survey. Int. J. Comput. Vision (2018). https://doi.org/10.1007/s11263-018-1097-z
Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867–1874 (2014). https://doi.org/10.1109/CVPR.2014.241
Madrigal, F., Lerasle, F.: Robust head pose estimation based on key frames for human-machine interaction. EURASIP J. Image Video Process. (2020). https://doi.org/10.1186/s13640-020-0492-x
Kamarol, S.K.A., Jaward, M.H., Kälviäinen, H., Parkkinen, J., Parthiban, R.: Joint facial expression recognition and intensity estimation based on weighted votes of image sequences. Pattern Recognition Letters 92, 25–32 (2017). https://doi.org/10.1016/j.patrec.2017.04.003
Verma, R., Davatzikos, C., Indersmitten, T., Hu, R., Kohler, C., Gur, R., Gur, R.: Quantification of facial expressions using high-dimensional shape transformations. J. Neurosci. Methods 141, 61–73 (2005). https://doi.org/10.1016/j.jneumeth.2004.05.016
K. K. Lee, Y. Xu: Real-time estimation of facial expression intensity. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 2, pp. 2567–25722 (2003). https://doi.org/10.1109/ROBOT.2003.1241979
Wu, J., Xiao, S.: Quantitative intensity analysis of facial expressions using hmm and linear regression. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry. VRCAI ’14, pp. 247–250. Association for Computing Machinery, New York, NY, USA (2014)
Rudovic, O., Pavlovic, V., Pantic, M.: Multi-output laplacian dynamic ordinal regression for facial expression recognition and intensity estimation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2634–2641 (2012). https://doi.org/10.1109/CVPR.2012.6247983
Ekman, P., Friesen, W.: Facial action coding system: a technique for the measurement of facial movement. (1978)
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1
Gilles, L., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in forests of randomized trees. Advances in Neural Information Processing Systems 26 (2013)
Nembrini, S., König, I., Wright, M.: The revival of the gini importance? Bioinformatics (Oxford, England) 34 (2018) https://doi.org/10.1093/bioinformatics/bty373
Sariyanidi, E., Gunes, H., Cavallaro, A.: Automatic analysis of facial affect: A survey of registration, representation, and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1113–1133 (2015). https://doi.org/10.1109/TPAMI.2014.2366127
Tirunagari, S., Poh, N.D.W., Iorliam, A., Suki, N., Ho, A.T.S.: Detection of face spoofing using visual dynamics. IEEE Trans. Inf. Forensics Secur. 10, 762–777 (2015)
Li, H., He, P., Wang, S., Rocha, A., Jiang, X., Kot, A.C.: Learning generalized deep feature representation for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 13, 2639–2652 (2018)
Savage, N.: (2023). https://spie.org/news/photonics-focus/septoct-2023/exposing-deepfake-imagery
Demir, I., Çiftçi, U.A.: How do deepfakes move? motion magnification for deepfake source detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 4780–4790 (2024)
Acknowledgements
This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under project EEAG-116E088. We also acknowledge the Titan V GPU donation by the NVIDIA Corporation.
Author information
Authors and Affiliations
Contributions
Credit Author Statement Zeynep Nur Saraçbasi: Conceptualization, Methodology, Software, Investigation, Writing-Original Draft Çigdem Eroglu Erdem: Conceptualization, Methodology, Writing – Review & Editing, Supervision, Project Administration, Funding acquisition Murat Taskiran: Conceptualization, Methodology, Investigation, Writing – Review & Editing. Nihan Kahraman: Investigation, Supervision, Writing – Review & Editing
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no Conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Saracbasi, Z.N., Eroglu Erdem, C., Taskiran, M. et al. MYFED: a dataset of affective face videos for investigation of emotional facial dynamics as a soft biometric for person identification. Machine Vision and Applications 36, 8 (2025). https://doi.org/10.1007/s00138-024-01625-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-024-01625-0