[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Utilization of DenseNet201 for diagnosis of breast abnormality

  • SPECIAL ISSUE PAPER
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

As one of the leading killers of females, breast cancer has become one of the heated research topics in the community of clinical medical science and computer science. In the clinic, mammography is a publicly accepted technique to detect early abnormalities such as masses and distortions in breast leading to cancer. Interpreting the images, however, is time-consuming and error-prone for radiologists considering artificial factors including potential fatigue. To improve radiologists’ working efficiency, we developed a semi-automatic computer-aided diagnosis system to classify mammograms into normality and abnormality and thus to ease the process of making a diagnosis of breast cancer. Through transferring deep convolutional neural network DenseNet201 on the basis of suspicious regions provided by radiologists into our system, we obtained the network we termed DenseNet201-C, which achieved a high diagnostic accuracy of 92.73%. The comparison results between our method and the other five methods show that our method achieved the highest accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Breast cancer treatment. https://www.cancer.gov/types/breast/patient/breast-treatment-pdq#section/all?redirect=true. Accessed 5 Jan 2019

  2. Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  3. Hua, K.-L., Hsu, C.-H., Hidayati, S.C., Cheng, W.-H., Chen, Y.-J.: Computer-aided classification of lung nodules on computed tomography images via deep learning technique. OncoTargets Thera. 8, 2015–2022 (2015)

    Google Scholar 

  4. Jalalian, A., Mashohor, S.B.T., Mahmud, H.R., Saripan, M.I.B., Rahman, A., Ramli, B., Karasfi, B.: Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin. Imaging 37(3), 420–426 (2013)

    Article  Google Scholar 

  5. Venkata Rao, R., Chen, P.: Abnormal breast detection in mammogram images by feed-forward neural network trained by Jaya algorithm. Fundamenta Informaticae 151(1–4), 191–211 (2017)

    MathSciNet  Google Scholar 

  6. Dhungel, N., Carneiro, G., Bradley, A.P.: Automated mass detection in mammograms using cascaded deep learning and random forests. In: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE (2015)

  7. Mordang, J.-J., Janssen, T., Bria, A., Kooi, T., Gubern-Mérida, A., Karssemeijer, N.: Automatic microcalcification detection in multi-vendor mammography using convolutional neural networks. In: International Workshop on Digital Mammography, pp. 35–42. Springer, Berlin (2016)

    Chapter  Google Scholar 

  8. Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hashoul, S., Ben-Ari, R., Barkan, E.: A CNN based method for automatic mass detection and classification in mammograms. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 7(3), 242–249 (2017)

    Article  Google Scholar 

  9. Avalos-Rivera, E.D., de J Pastrana-Palma, A.: Classifying microcalcifications on digital mammography using morphological descriptors and artificial neural network. In: Ciencias de la Informática y Desarrollos de Investigación (CACIDI), IEEE Congreso Argentino de, pp. 1–4. IEEE (2016)

  10. Pan, C., Chen, X., Wang, F.: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling. J. Comput. Sci. 27, 57–68 (2018)

    Article  Google Scholar 

  11. Hang, W., Liu, Z., Hannun, A.: Glimpsenet: attentional methods for full-image mammogram diagnosis

  12. Wu, C., Liu, Y., Feng, D., Wang, F., Tu, P.: Femtosecond laser ablation power level identification based on the ablated spot image. Int. J. Adv. Manuf. Technol. 94(5–8), 2605–2612 (2018)

    Google Scholar 

  13. Yang, L., Feng, D., Tu, P., Wang, F., Wu, C.: Pseudo-color enhancement and its segmentation for femtosecond laser spot image. Microw. Opt. Technol. Lett. 60(4), 854–865 (2018)

    Article  Google Scholar 

  14. Wang, F., Xu, A., Zeng, K., Chen, Z., Zhou, Y.: Research for billet limited weight cutting based on behavior stateflow. In: MATEC Web of Conferences, vol. 68, p. 02005. EDP Sciences (2016)

  15. Wang, S., Chen, Y.: Fruit category classification via an eight-layer convolutional neural network with parametric rectified linear unit and dropout technique. Multimed. Tools Appl. https://doi.org/10.1007/s11042-018-6661-6 (2018)

    Article  Google Scholar 

  16. Chen, Y., Zhang, Y., Yang, M., Lu, H., Wang, H., Liu, B., Phillips, P., Wang, S., Zhan, T.: Multiple sclerosis detection based on biorthogonal wavelet transform, rbf kernel principal component analysis, and logistic regression. IEEE Access 4, 7567–7576 (2016)

    Article  Google Scholar 

  17. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

  18. Aytar, Y., Zisserman, A.: Tabula rasa: model transfer for object category detection. In 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2252–2259. IEEE (2011)

  19. Geng, M., Wang, Y., Xiang, T., Tian, Y.: Deep transfer learning for person re-identification. arXiv preprint arXiv:1611.05244 (2016)

  20. Shao, L., Zhu, F., Li, X.: Transfer learning for visual categorization: a survey. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 1019–1034 (2015)

    Article  MathSciNet  Google Scholar 

  21. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 9 (2016)

    Article  Google Scholar 

  22. Samala, R.K., Chan, H.-P., Hadjiiski, L., Helvie, M.A., Wei, J., Cha, K.: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med. Phys. 43(12), 6654–6666 (2016)

    Article  Google Scholar 

  23. Huynh, B.Q., Li, H., Giger, M.L.: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3(3), 034501 (2016)

    Article  Google Scholar 

  24. The mini-mias database of mammograms. http://peipa.essex.ac.uk/info/mias.html. Accessed 4 Jan 2019

  25. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, vol. 1, p. 3 (2017)

  26. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 248–255. IEEE (2009)

  27. Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny Images. Technical report, Citeseer (2009)

  28. Imagenet classification challenge 2012. http://image-net.org/challenges/LSVRC/2012. Accessed 28 Dec 2018

  29. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  31. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectify er neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

  32. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  33. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  34. Yang, S.-N., Li, F.-J., Liao, Y.-H., Chen, Y.-S., Shen, W.-C., Huang, T.-C.: Identification of breast cancer using integrated information from mri and mammography. PLoS ONE 10(6), e0128404 (2015)

    Article  Google Scholar 

  35. Görgel, P., Sertbas, A., Uçan, O.N.: Computer-aided classification of breast masses in mammogram images based on spherical wavelet transform and support vector machines. Expert Syst. 32(1), 155–164 (2015)

    Article  Google Scholar 

  36. Liu, G., Yang, J.: Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional Fourier transform. Adv. Mech. Eng. 8(2), 1–11 (2016)

    Google Scholar 

  37. Wu, X., Lu, S., Wang, H., Phillips, P., Wang, S.: Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization. Simulation 92(9), 873–885 (2016)

    Article  Google Scholar 

  38. Zhang, X., Yang, J., Nguyen, E.: Breast cancer detection via hu moment invariant and feedforward neural network. In: AIP Conference Proceedings, vol. 1954. AIP Publishing (2018)

Download references

Acknowledgements

This paper is financially supported by Henan Key Research and Development Project (182102310629), Guangxi Key Laboratory of Trusted Software (kx201901), Open Fund of Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology (17-259-05-011K), National key research and development plan (2017YFB1103202), and Natural Science Foundation of China (61602250, U1711263, U1811264). Also, Xiang Yu holds a China Scholarship Council studentship with the University of Leicester.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nianyin Zeng, Shuai Liu or Yu-Dong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Zeng, N., Liu, S. et al. Utilization of DenseNet201 for diagnosis of breast abnormality. Machine Vision and Applications 30, 1135–1144 (2019). https://doi.org/10.1007/s00138-019-01042-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-019-01042-8

Keywords

Navigation