Abstract
Multi-object tracking is a difficult problem underlying many computer vision applications. In this work, we focus on bedload sediment transport experiments in a turbulent flow were sediments are represented by small spherical calibrated glass beads. The aim is to track all beads over long time sequences to obtain sediment velocities and concentration. Classical algorithms used in fluid mechanics fail to track the beads over long sequences with a high precision because they incorrectly handle both miss-detections and detector imprecision. Our contribution is to propose a particle filter-based algorithm including a multiple motion model adapted to our problem. Additionally, this algorithm includes several improvements such as the estimation of the detector confidence to account for the lack of precision of the detector. The evaluation was made using two test sequences—one from our experimental setup and one from a simulation created numerically—with their dedicated ground truths. The results show that this algorithm outperforms state-of-the-art concurrent algorithms.
Similar content being viewed by others
Notes
An application is online when the inputs to the associated algorithm is provided as a stream, piece-by-piece.
A mismatch is a mistaken switch of tracker identifiers.
The precision is the fraction of retrieved instances that are relevant.
The recall is the fraction of relevant instances that are retrieved.
References
Ali, S., Shah, M.: Floor fields for tracking in high density crowd scenes. In: European Conference on Computer Vision (ECCV), pp. 1–14. Springer (2008). https://doi.org/10.1007/978-3-540-88688-4_1
Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008). https://doi.org/10.1109/CVPR.2008.4587583
Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002). https://doi.org/10.1109/78.978374
Arulampalam, M.S., Ristic, B., Gordon, N., Mansell, T.: Bearings-only tracking of manoeuvring targets using particle filters. J. Adv. Signal Process. EURASIP 2004(15), 1–15 (2004). https://doi.org/10.1155/S1110865704405095
Bacchi, V., Recking, A., Eckert, N., Frey, P., Piton, G., Naaim, M.: The effects of kinetic sorting on sediment mobility on steep slopes. Earth Surf. Process. Landf. 39(8), 1075–1086 (2014). https://doi.org/10.1002/esp.3564
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. J. Image Video Process. 2008(246309), 1–10 (2008). https://doi.org/10.1155/2008/246309
Blom, H.A.P., Bar-Shalom, Y.: The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Autom. Control 33(8), 780–783 (1988). https://doi.org/10.1109/9.1299
Boers, Y., Driessen, J.N.: Interacting multiple model particle filter. IEE Proc. Radar Sonar Navig. 150(5), 344–349 (2003). https://doi.org/10.1049/ip-rsn:20030741
Böhm, T., Frey, P., Ducottet, C., Ancey, C., Jodeau, M., Reboud, J.L.: Two-dimensional motion of a set of particles in a free surface flow with image processing. Exp. Fluids 41(1), 1–11 (2006). https://doi.org/10.1007/s00348-006-0134-9
Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell (TPAMI) 33(9), 1820–1833 (2011). https://doi.org/10.1109/TPAMI.2010.232
Chang, D.C., Fan, M.W.: Interacting multiple model particle filtering using new particle resampling algorithm. In: Global Communications Conference (GLOBECOM), pp. 3215–3219. IEEE (2014). https://doi.org/10.1109/glocom.2014.7037301
Choset, H., Nagatani, K.: Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Trans. Robot. Autom. 17(2), 125–137 (2001). https://doi.org/10.1109/70.928558
Dou, J., Li, J.: Robust visual tracking based on interactive multiple model particle filter by integrating multiple cues. Neurocomputing 135, 118–129 (2014). https://doi.org/10.1016/j.neucom.2013.12.049
Doucet, A., de Freitas, A., Gordon, N.: Sequential Monte Carlo methods in practice. Springer Science & Business Media (2001). https://doi.org/10.1007/978-1-4757-3437-9
Efron, B., Tibshirani, R.J.: An introduction to the bootstrap. CRC Press, Boca Raton (1994). https://doi.org/10.1007/978-1-4899-4541-9
Frey, P.: Particle velocity and concentration profiles in bedload experiments on a steep slope. Earth Surf. Process. Landf. 39(5), 646–655 (2014). https://doi.org/10.1002/esp.3517
Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F Radar Signal Process. 140(2), 107–113 (1993). https://doi.org/10.1049/ip-f-2.1993.0015
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: European Conference on Computer Vision (ECCV), vol. 7575, pp. 702–715. Springer (2012). https://doi.org/10.1007/978-3-642-33765-9_50
Hergault, V., Frey, P., Métivier, F., Barat, C., Ducottet, C., Böhm, T., Ancey, C.: Image processing for the study of bedload transport of two-size spherical particles in a supercritical flow. Exp. Fluids 49(5), 1095–1107 (2010). https://doi.org/10.1007/s00348-010-0856-6
Honkanen, M., Nobach, H.: Background extraction from double-frame PIV images. Exp. Fluids 38(3), 348–362 (2005). https://doi.org/10.1007/s00348-004-0916-x
Houssais, M., Ortiz, C.P., Durian, D.J., Jerolmack, D.J.: Onset of sediment transport is a continuous transition driven by fluid shear and granular creep. Nat. Commun. 6, 6527 (2015). https://doi.org/10.1038/ncomms7527
Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998). https://doi.org/10.1023/A:1008078328650
Isard, M., Blake, A.: A mixed-state condensation tracker with automatic model-switching. In: IEEE 6th International Conference on Computer Vision (ICCV), pp. 107–112. IEEE (1998). https://doi.org/10.1109/ICCV.1998.710707
Khalid, S.S., Abrar, S.: A low-complexity interacting multiple model filter for maneuvering target tracking. AEU-Int. J. Electron. Commun. 73, 157–164 (2017). https://doi.org/10.1016/j.aeue.2017.01.011
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955). https://doi.org/10.1007/978-3-540-68279-0_2
Lafaye de Micheaux, H., Ducottet, C., Frey, P.: Online multi-model particle filter-based tracking to study bedload transport. In: IEEE International Conference on Image Processing (ICIP), pp. 3489–3493. IEEE (2016). https://doi.org/10.1109/ICIP.2016.7533008
Leibe, B., Schindler, K., Cornelis, N., Van Gool, L.: Coupled object detection and tracking from static cameras and moving vehicles. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 30(10), 1683–1698 (2008). https://doi.org/10.1109/TPAMI.2008.170
Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1255–1321 (2005). https://doi.org/10.1109/taes.2005.1561886
Lu, W.L., Okuma, K., Little, J.J.: Tracking and recognizing actions of multiple hockey players using the boosted particle filter. Image Vis. Comput. 27(1), 189–205 (2009). https://doi.org/10.1016/j.imavis.2008.02.008
Maurin, R., Chauchat, J., Chareyre, B., Frey, P.: A minimal coupled fluid-discrete element model for bedload transport. Phys. Fluids (1994-present) 27(11), 113,302 (2015). https://doi.org/10.1063/1.4935703
Maurin, R., Chauchat, J., Frey, P.: Dense granular flow rheology in turbulent bedload transport. J. Fluid Mech. 804, 490–512 (2016). https://doi.org/10.1017/jfm.2016.520
Maurin, R., Chauchat, J., Frey, P.: Revisiting slope influence in turbulent bedload transport: Consequences for vertical flow structure and transport rate scaling. J. Fluid Mech. 839, 135–156 (2018). https://doi.org/10.1017/jfm.2017.903
Mazor, E., Averbuch, A., Bar-Shalom, Y., Dayan, J.: Interacting multiple model methods in target tracking: a survey. IEEE Trans. Aerosp. Electron. Syst. 34(1), 103–123 (1998). https://doi.org/10.1109/7.640267
McGinnity, S., Irwin, G.W.: Multiple model bootstrap filter for maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. 36(3), 1006–1012 (2000). https://doi.org/10.1109/7.869522
Odobez, J.M., Gatica-Perez, D., Ba, S.O.: Embedding motion in model-based stochastic tracking. IEEE Trans. Image Proces. 15(11), 3514–3530 (2006). https://doi.org/10.1109/TIP.2006.877497
Ohmi, K., Li, H.Y.: Particle-tracking velocimetry with new algorithms. Meas. Sci. Technol. 11(6), 603–616 (2000). https://doi.org/10.1088/0957-0233/11/6/303
Ouellette, N.T., Xu, H., Bodenschatz, E.: A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. Fluids 40(2), 301–313 (2006). https://doi.org/10.1007/s00348-005-0068-7
Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Tracking deforming objects using particle filtering for geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 29(8), 1470–1475 (2007). https://doi.org/10.1109/TPAMI.2007.1081
Recking, A., Bacchi, V., Naaim, M., Frey, P.: Antidunes on steep slopes. J. Geophys. Res. Earth Surf. 114, F04025 (2009). https://doi.org/10.1029/2008JF001216
Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: An experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 36(7), 1442–1468 (2014). https://doi.org/10.1109/TPAMI.2013.230
Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (1999). https://doi.org/10.1007/978-3-662-05088-0
Theunissen, R., Scarano, F., Riethmuller, M.: On improvement of PIV image interrogation near stationary interfaces. Exp. Fluids 45(4), 557–572 (2008). https://doi.org/10.1007/s00348-008-0481-9
Westerweel, J., Elsinga, G.E., Adrian, R.J.: Particle image velocimetry for complex and turbulent flows. Ann. Rev. Fluid Mech. 45(1), 409–436 (2013). https://doi.org/10.1146/annurev-fluid-120710-101204
Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. Int. J. Comput. Vis. 75(2), 247–266 (2007). https://doi.org/10.1007/s11263-006-0027-7
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2411–2418. IEEE (2013). https://doi.org/10.1109/CVPR.2013.312
Zhai, Y., Yeary, M.B., Cheng, S., Kehtarnavaz, N.: An object-tracking algorithm based on multiple-model particle filtering with state partitioning. IEEE Trans. Instrum. Meas. 58(5), 1797–1809 (2009). https://doi.org/10.1109/tim.2009.2014511
Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.Q.: Crowd analysis: a survey. Mach. Vis. Appl. 19(5), 345–357 (2008). https://doi.org/10.1007/s00138-008-0132-4
Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008). https://doi.org/10.1109/CVPR.2008.4587584
Acknowledgements
This research was supported by Irstea; labex OSUG@2020; INSU programme EC2CO-BIOHEFECT and DRIL Modsed; the French national research agency project SegSed ANR-16-CE01-0005; and the Rhône-Alpes region as part of its higher education, research and innovation regional Strategy (Environment Academic Research Community).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lafaye de Micheaux, H., Ducottet, C. & Frey, P. Multi-model particle filter-based tracking with switching dynamical state to study bedload transport. Machine Vision and Applications 29, 735–747 (2018). https://doi.org/10.1007/s00138-018-0925-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-018-0925-z