Abstract
In this paper we propose an efficient approach for automatic generation of 3D models from images based on structure from motion (SfM) and multi-view stereo reconstruction techniques. Current imaging devices are capable of producing high-definition images and are an ubiquitous payload of unmanned aerial vehicles. However, the time required to obtain models quickly becomes prohibitive as the number of images increases. In our approach, which is image-based only, we use meta-data information such as GPS, keypoint filtering and multiple local bundle adjustment refinement instead of global optimization in a novel scheme to speed up the incremental SfM process. The results from real data show that our approach outperforms the time performance of current strategies while maintaining the quality of the resulting model. Experiments with an unorganized set of images were also conducted, and the results show that our method is able to efficiently estimate 3D models from collections of images with reduced re-projection error.
Similar content being viewed by others
Notes
Commercial off-the-shelf.
This value was defined empirically, but it is not critical if it remains within the limits between \({\le }0.10\) or \({\ge }0.90\) according to our experiments.
Points that have a triangulation angle higher than 2.0\(^{\circ }\).
References
Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org (2015)
Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In: ICCV, pp. 72–79 (2009)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). CVIU 110(3), 346–359 (2008)
Bosse, M., Zlot, R., Flick, P.: Zebedee: design of a spring-mounted 3-d range sensor with application to mobile mapping. IEEE Trans. Rob. 28(5), 1104–1119 (2012)
Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: CVPR, pp. 3001–3008 (2011). doi:10.1109/CVPR.2011.5995626
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: Large-scale direct monocular SLAM. In: ECCV (2014)
Frahm, J.M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.H., Dunn, E., Clipp, B., Lazebnik, S., et al.: Building rome on a cloudless day. In: ECCV, pp. 368–381 (2010)
Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. PAMI 32(8), 1362–1376 (2010)
Hartley, R.I.: In defense of the eight-point algorithm. PAMI 19(6), 580–593 (1997). doi:10.1109/34.601246
James, M.R., Robson, S.: Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J. Geophys. Res. Earth Surf. 117(F3) (2012)
Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.S.: Pushing the envelope of modern methods for bundle adjustment. PAMI 34(8), 1605–1617 (2012). doi:10.1109/TPAMI.2011.256
Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on geometry processing, vol. 7 (2006)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004). doi:10.1023/B:VISI.0000029664.99615.94
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963). doi:10.1137/0111030
Mitra, K., Chellappa, R.: A scalable projective bundle adjustment algorithm using the l infinity norm. In: Sixth Indian conference on computer vision, graphics and image processing, 2008. ICVGIP’08. pp. 79–86. IEEE (2008)
Moulon, P., Monasse, P., Marlet, R.: Adaptive structure from motion with a contrario model estimation. In: ACCV, pp. 257–270 (2012)
Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: In VISAPP international conference on computer vision theory and applications, pp. 331–340 (2009)
Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR, vol. 2, pp. 2161–2168. IEEE (2006)
Ozyesil, O., Singer, A.: Robust camera location estimation by convex programming. In: Proceedings of the IEEE CVPR, pp. 2674–2683 (2015)
Pollefeys, M., Nistér, D., Frahm, J.M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.J., Merrell, P., et al.: Detailed real-time urban 3d reconstruction from video. IJCV 78(2–3), 143–167 (2008). doi:10.1007/s11263-007-0086-4
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: ICCV. Barcelona (2011)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE CVPR, pp. 4104–4113 (2016)
Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. IJCV 80(2), 189–210 (2008). doi:10.1007/s11263-007-0107-3
Strecha, C., Pylvanainen, T., Fua, P.: Dynamic and scalable large scale image reconstruction. In: CVPR, pp. 406–413. IEEE Computer Society (2010)
Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Proceedings of the IEEE CVPR, pp. 1–8 (2008)
Teza, G., Pesci, A., Ninfo, A.: Morphological analysis for architectural applications: comparison between laser scanning and structure-from-motion photogrammetry. J. Surv. Eng. p. 04016004 (2016). doi:10.1061/(ASCE)SU.1943-5428.0000172
Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. IJCV 9(2), 137–154 (1992). doi:10.1007/BF00129684
Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. PAMI 13(4), 376–380 (1991). doi:10.1109/34.88573
Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M.: ’Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012)
Wilson, K., Snavely, N.: Robust global translations with 1dsfm. In: ECCV, pp. 61–75. Springer (2014)
Wu, C.: Towards linear-time incremental structure from motion. In: 3DV, pp. 127–134 (2013)
Zhu, S., Fang, T., Xiao, J., Quan, L.: Local readjustment for high-resolution 3D reconstruction. In: Proceedings of the IEEE CVPR, pp. 3938–3945 (2014). doi:10.1109/CVPR.2014.503
Acknowledgements
We thank the anonymous reviewers for their comments and insightful observations. This work is supported by CAPES, CNPq, FAPEMIG, and Vale Institute of Technology (ITV).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Potje, G., Resende, G., Campos, M. et al. Towards an efficient 3D model estimation methodology for aerial and ground images. Machine Vision and Applications 28, 937–952 (2017). https://doi.org/10.1007/s00138-017-0875-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-017-0875-x