[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Structured light self-calibration with vanishing points

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper introduces the vanishing points to self-calibrate a structured light system. The vanishing points permit to automatically remove the projector’s keystone effect and then to self-calibrate the projector–camera system. The calibration object is a simple planar surface such as a white paper. Complex patterns and 3D calibrated objects are not required any more. The technique is compared to classic calibration and validated with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Agin, G.J., Binford, T.O.: Computer description of curved objects. In: International Joint Conferences on, Artificial Intelligence. Stanford, pp. 629–640 (1973)

  2. Bosse, M., Rikoski, R., Leonard, J., Teller, S.: Vanishing points and three-dimensional lines from omni-directional video. Vis. Comput. 19, 417–430 (2003)

    Article  Google Scholar 

  3. Bouguet, J.: Camera calibration toolbox for matlab. Cambridge University Press, Cambridge (2004)

  4. Caprile, B., Torre, V.: Using vanishing points for camera calibration. Int. J. Comput. Vis. 4, 127–140 (1990)

    Article  Google Scholar 

  5. Chen, X., Davis, J., Slusallek, P.: Wide area camera calibration using virtual calibration object. Proc. CVPR, pp. 2520–2527 (2000)

  6. Cipolla, R., Drummond, T., Robertson, D.: Camera calibration from vanishing points in images of architectural scenes. In: BMVC99, pp. 382–391, University of Cambridge, Cambridge (1999)

  7. Coughlan, J.M., Yuille, A.L.: Manhattan world: compass direction from a single image by bayesian inference. In: International Conference on Computer Vision (ICCV), pp. 941–947. MIT Press, Cambridge (1999)

  8. Falcao, G., Hurtos, N., Massich, J., Fofi, D.: Projector-camera calibration toolbox, Tech. rep., University of Burgundy, Le2i UMR CNRS 6306-IUT Le Creusot http://code.google.com/p/procamcalib (2009). Accessed 12 Mar 2013

  9. Fernandez, S., Salvi, J.: Planar-based camera-projector calibration. In: IEEE 7th International Symposium on Image and Signal Processing and Analysis, pp. 633–638. Dubrovnik (2011)

  10. Forster, F.: A high-resolution and high accuracy real-time 3d sensor based on structured light. In: Proceeding of 3th International Symposium on 3D Data Processing, Visualization and Transmission, pp. 208–215. Padova, Italy (2006)

  11. Furukawa, Y., Ponce, J.: Accurate camera calibration from multi-view stereo and bundle adjustment. Int. J. Comput. Vis. 84, 257–268 (2009)

    Article  Google Scholar 

  12. Guillou, E., Meneveaux, D., Maisel, E., Bouatouch, K.: Using vanishing points for camera calibration and coarse 3D reconstruction from a single image. Vis. Comput. 16, 396–410 (2000)

    Article  MATH  Google Scholar 

  13. Hartley, R.I., Kaucic, R.: Sensitivity of calibration to principal point position. In: Proceeding of Seventh European Conference on Computer Vision, pp. 433–446. Springer (2000)

  14. Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction, pp. 1106–1112, CVPR, USA (1997)

  16. Hurtos, T., Falcao, G., Massich, J.: Plane-based calibration of a projector camera system. Master’s thesis, VIBOT master, University of Girona, Girona (2008)

  17. Kimura, M., Mochimary, M., Kanade, T.: Projector calibration using arbitrary planes and calibrated camera, pp. 1–2. CVPR, USA (2007)

  18. Kogecka, J., Zhang, W.: Efficient computation of vanishing points. IEEE Intern. Conf. Robot. Autom. 1, 223–228 (2002)

    Google Scholar 

  19. Li, B., Peng, K., Ying, X., Zha, H.: Simultaneous vanishing point detection and camera calibration from single images, pp. 151–160, ISVC’ 10, USA (2010)

  20. Martynov, I., Kämäräinen, J.K., Lensu, L.: Projector calibration by “inverse camera calibration”. In: Scandinavian Conference on Image Analysis (SCIA) (2011)

  21. Orghidan, R., Salvi, J.: Toolbox for the calibration of a structured light system. users.utcluj.ro/\(\sim \)orghidan (2012)

  22. Pages, J., Salvi, J.: A new optimised de bruijn coding strategy for structured light patterns. 17th International Conference on Pattern Recognition, vol. 4, pp. 284–287, Spain (2004)

  23. Rother, C.: A new approach for vanishing point detection in architectural environments. J. Imag Vis. Comput. 20(9–10), 647–656 (2002)

    Article  Google Scholar 

  24. Salvi, J., Armangué, X., Batlle, J.: A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognit. 35(7), 1617–1635 (2002)

    Article  MATH  Google Scholar 

  25. Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pattern Recognit. 43(8), 2666–2680 (2010)

    Article  MATH  Google Scholar 

  26. Sukthankar, R., Stockton, R.G., Mullin, M.D.: Smarter presentations: Exploiting homography in camera-projector systems. Proc. Intern. Conf. Comput. Vis. 1, 247–253 (2001)

    Google Scholar 

  27. Sun, W., Cooperstock, J.: An empirical evaluation of factors influencing camera calibration accuracy using three publicly available techniques. Mach. Vis. Appl. 17(1), 51–67 (2006)

    Article  Google Scholar 

  28. Tardif, J.: Non-iterative approach for fast and accurate vanishing point detection. In: IEEE 12th International Conference on Computer Vision, pp. 1250–1257, Kyoto (2009)

  29. Tsai, R.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  30. Zhang, L., Curless, B., Seitz, S.M.: Rapid shape acquisition using color structured light and multi-pass dynamic programming. In: Proceedings of the 1st International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), pp. 24–36. Padova (2001)

  31. Zhang, X., Zhu, L.: Projector calibration from the camera image point of view. Opt. Eng. 48, 117–208 (2009)

    Google Scholar 

  32. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the project “Development and support of multidisciplinary postdoctoral programmes in major technical areas of national strategy of Research, Development, Innovation” 4D-POSTDOC, contract no. POSDRU/89/1.5/S/52603, project co-funded by the European Social Fund through Sectoral Operational Programme Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Gordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orghidan, R., Salvi, J., Gordan, M. et al. Structured light self-calibration with vanishing points. Machine Vision and Applications 25, 489–500 (2014). https://doi.org/10.1007/s00138-013-0517-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0517-x

Keywords

Navigation