[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Fast parameter-free region growing segmentation with application to surgical planning

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a self-assessed adaptive region growing segmentation algorithm. In the context of an experimental virtual-reality surgical planning software platform, our method successfully delineates main tissues relevant for reconstructive surgery, such as fat, muscle, and bone. We rely on a self-tuning approach to deal with a great variety of imaging conditions requiring limited user intervention (one seed). The detection of the optimal parameters is managed internally using a measure of the varying contrast of the growing region, and the stopping criterion is adapted to the noise level in the dataset thanks to the sampling strategy used for the assessment function. Sampling is referred to the statistics of a neighborhood around the seed(s), so that the sampling period becomes greater when images are noisier, resulting in the acquisition of a lower frequency version of the contrast function. Validation is provided for synthetic images, as well as real CT datasets. For the CT test images, validation is referred to manual delineations for 10 cases and to subjective assessment for another 35. High values of sensitivity and specificity, as well as Dice’s coefficient and Jaccard’s index on one hand, and satisfactory subjective evaluation on the other hand, prove the robustness of our contrast-based measure, even suggesting suitability for calibration of other region-based segmentation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reitinger B., Bornik A., Beichel R., Schmalstieg D.: Liver surgery planning using virtual reality. IEEE Comput. Graph. Appl. 26(6), 36–47 (2006)

    Article  Google Scholar 

  2. Suárez C., Acha B., Serrano C., Parra C., Gómez T.: VirSSPA—a virtual reality tool for surgical planning workflow. Int. J. Comput. Assist. Radiol. Surg. 4, 133–139 (2009)

    Article  Google Scholar 

  3. Zucker S.W.: Region growing: childhood and adolescence. Comput. Graph. Image Process. 5(3), 382–399 (1976)

    Article  Google Scholar 

  4. Sivewright G.J., Elliott P.J.: Interactive region and volume growing for segmenting volumes in MR and CT images. Med. Inf. 19(1), 71–80 (1994)

    Article  Google Scholar 

  5. Sekiguchi H., Sano K., Yokoyama T.: Interactive 3-dimensional segmentation method based on region growing method. Syst. Comput. Jpn. 25(1), 88–97 (1994)

    Article  Google Scholar 

  6. Zhou, X., Kamiya, N., Kara, T., Fujita, H., Yokoyama, R., Kiryu, T., Hoshi, H.: Automated recognition of human strucure from torso CT images. In: Proceedings of the Fourth IASTED International Conference on Visualization, Imaging, and Image Processing, pp. 584–589 (2004)

  7. Law, T.Y., Heng, P.A.: Automated extraction of bronchus from 3D CT images of lung based on genetic algorithm and 3D region growing. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 3979, pp. I/– (2000)

  8. Adams R., Bischof L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  9. Dehmeshki J., Amin H., Valdivieso M., Ye X.: Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans. Med. Imag. 27(4), 467–480 (2008)

    Article  Google Scholar 

  10. Hojjatoleslami S.A., Kittler J.: Region growing: a new approach. IEEE Trans. Image Process. 7(7), 1079–1084 (1998)

    Article  Google Scholar 

  11. Haralick R.M., Shapiro L.G.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 29(1), 100–132 (1985)

    Article  Google Scholar 

  12. Revol-Muller C., Peyrin F., Carrillon Y., Odet C.: Automated 3D region growing algorithm based on an assessment function. Pattern Recognit. Lett. 23(1–3), 137–150 (2002)

    Article  MATH  Google Scholar 

  13. Udupa J.K., Samarasekera S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Image Process. 58(3), 246–261 (1996)

    Article  Google Scholar 

  14. Udupa J.K.: Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Trans. Med. Imag. 16(5), 598–609 (1997)

    Article  Google Scholar 

  15. Saha P.K., Udupa J.K., Conant E.F., Chakraborty D.P., Sullivan D.: Breast tissue density quantification via digitized mammograms. IEEE Trans. Med. Imag. 20(8), 792–803 (2001)

    Article  Google Scholar 

  16. Luo S., Li X., Zhou G.: A simplified fuzzy connectedness method used for segmentation of vessel images. Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. 1, 751–753 (2003)

    Google Scholar 

  17. Tschirren J., Huffman E.A., McLennan G., Sonka M.: Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans. Med. Imag. 24(12), 1529–1539 (2005)

    Article  Google Scholar 

  18. Udupa J.K., Saha P.K., Lotufo R.A.: Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1485–1500 (2002)

    Article  Google Scholar 

  19. Jian, W., Feng, Y., Ma, J.L., Sun, X.P., Jing, X., Cui, Z.M.: The segmentation and visualization of human organs based on adaptive region growing method. In: Proceedings of 8th IEEE International Conference on Computer and Information Technology Workshops, CIT Workshops 2008, pp. 439–443 (2008)

  20. Yoo T.S., Ackerman M.J., Lorensen W.E., Schroeder W., Chalana V., Aylward S., Metaxas D., Whitaker R.: Engineering and algorithm design for an image processing API: a technical report on ITK–the Insight Toolkit. Stud. Health Technol. Inf. 85, 586–592 (2002)

    Google Scholar 

  21. Pieper, S., Lorensen, B., Schroeder, W., Kikinis, R.: The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community. In: Proceedings of 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro, vol. 2006, pp. 698–701 (2006)

  22. Udupa J.K., LeBlanc V.R., Zhuge Y., Imielinska C., Schmidt H., Currie L.M., Hirsch B.E., Woodburn J.: A framework for evaluating image segmentation algorithms. Comput. Med. Imag. Graph. 30(2), 75–87 (2006)

    Article  Google Scholar 

  23. Dice L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  24. Jaccard P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaudoise des Sci. Nat. 37, 547–579 (1901)

    Google Scholar 

  25. Lorensen W.E., Cline H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  26. Gacto-Sánchez, P., Sicilia-Castro, D., Gómez-Cía, T., Lagares, A., Collell, T., Suárez, C., Parra, C., Infante-Cossío, P., De La Higuera, J.M.: Use of a three-dimensional virtual reality model for preoperative imaging in DIEP flap breast reconstruction. J. Surg. Res. (2009) (in press)

  27. Gacto-Sánchez P., Sicilia-Castro D., Gómez-Cía T., Lagares A., Collell T., Suárez C., Parra C., Leal S., Infante-Cossío P., DeLa Higuera J.M.: Computed tomographic angiography with VirSSPA three-dimensional software for perforator navigation improves perioperative outcomes in DIEP flap breast reconstruction. Plast. Reconstruct. Surg. 125(1), 24–31 (2010)

    Article  Google Scholar 

  28. Gómez-Cía T., Gacto-Sánchez P., Sicilia D., Suárez C., Acha B., Serrano C., Parra C., Higuera J.: The virtual reality tool VirSSPA in planning DIEP microsurgical breast reconstruction. Int. J. Comput. Assist. Radiol. Surg. 4(4), 375–382 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos S. Mendoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza, C.S., Acha, B., Serrano, C. et al. Fast parameter-free region growing segmentation with application to surgical planning. Machine Vision and Applications 23, 165–177 (2012). https://doi.org/10.1007/s00138-010-0274-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-010-0274-z

Keywords

Navigation