[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimal occlusion of teeth using planar structure information

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In orthodontics, occlusion is defined as the relationship between the upper and lower sets of teeth when the jaws are brought together. Understanding the nature of occlusion has important significance for the diagnosis and treatment of occlusal dysfunction and for planning reconstructive dentistry. The materials of study are 31 pairs of manually aligned dental study models. The upper and lower models are independently digitized using a laser surface scanner. Occlusion can be recovered by detecting and aligning a set of planes on the models. We describe a two-step procedure for determining the occlusal relationship using digitized dental models. The first step is a coarse alignment using four planar structures that are detected by K-means clustering, followed by principal component analysis. The second step is a refinement process using a variant of the iterative closest point technique. The quantitative results show that the algorithm is accurate, with an average measurement discrepancy of 0.74 mm between the physical and virtual models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rapidform. INUS technology. http://www.rapidform.com

  2. Kevshavad A., Winstanley R.: An appraisal of the literature on centric relation. Part I. J. Oral Rehabil. 27, 823–833 (2000)

    Article  Google Scholar 

  3. Kevshavad A., Winstanley R.: An appraisal of the literature on centric relation. Part II. J. Oral Rehabil. 27, 1013–1023 (2000)

    Article  Google Scholar 

  4. Kevshavad A., Winstanley R.: An appraisal of the literature on centric relation. Part III. J. Oral Rehabil. 28, 55–63 (2001)

    Article  Google Scholar 

  5. Besl P.J., McKay N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  6. Campbell R.J., Flynn P.J.: A survey of free-form object representation and recognition techniques. Comput. Vis. Image Understand. 81, 166–210 (2001)

    Article  MATH  Google Scholar 

  7. Chen Y., Medioni G.: Object modeling by registration of multiple range images. Image Vis. Comput. 10, 145–155 (1992)

    Article  Google Scholar 

  8. Cohen-Steiner D., Alliez P., Desbrun M.: Variational shape approximation. ACM Trans. Graph. (SIGGRAPH) 23, 905–914 (2004)

    Article  Google Scholar 

  9. Dalley G., Flynn P.: Pair-wise range image registration: a study in outlier classification. Comput. Vis. Image Understand. 87, 104–115 (2002)

    Article  MATH  Google Scholar 

  10. DeLong R., Ko C.C., Anderson G.C., Hodges J.S., Douglas W.H.: Comparing maximum intercuspal contacts of virtual dental patients and mounted dental casts. J. Prosthet. Dent. 88, 622–630 (2002)

    Article  Google Scholar 

  11. Eggert D.W., Lorusso A., Fisher R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9, 272–290 (1997)

    Article  Google Scholar 

  12. Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: Proceedings of ACM Symposium on Interactive 3D Graphics, pp. 49–58 (2001)

  13. Hiew, L.T., Ong, S.H., Foong, K.W.C.: Optimal occlusion of teeth. In: IEEE 9th International Conference on Control, Automation, Robotics and Vision (ICARCV’06), pp. 1–5, Singapore (2006)

  14. Hiew, L.T., Zhang, H., Ong, S.H., Foong, K.W.C.: Occlusion analysis of dental study models. In: 12th International Conference on Biomedical Engineering (ICBME’05), Singapore (2005)

  15. Hoover A., Jean-Baptiste G., Jiang X., Flynn P.J., Bunke H., Goldgof D.B., Bowyer K., Eggert D.W., Fitzgibbon A., Fisher R.B.: An experimental comparison of range image segmentation algorithms. IEEE Trans. Pattern Anal. Machine Intell. 18, 673–689 (1996)

    Article  Google Scholar 

  16. Horn B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4, 629–642 (1987)

    Article  Google Scholar 

  17. Katz S., Tal A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. (SIGGRAPH) 22, 954–961 (2003)

    Article  Google Scholar 

  18. Lin S., Nussinov R.: Molecular recognition via face center representation of a molecular surface. J. Mol. Graph. 14, 78–90 (1996)

    Article  Google Scholar 

  19. Lin S., Nussinov R., Fischer D., Wolfson H.: Molecular surface representations by sparse critical points. Proteins Struct. Function Genet. 18, 94–101 (1994)

    Article  Google Scholar 

  20. Liu R., Zhang H.: Mesh segmentation via spectral embedding and contour analysis. Comput. Graph. Forum 26, 385–394 (2007)

    Article  Google Scholar 

  21. Mangan A.P., Whitaker R.T.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5, 308–321 (1999)

    Article  Google Scholar 

  22. Maruyama T., Nakamura Y., Hayashi T., Kata K.: Computer-aided determination of occlusal contact points for dental 3-D CAD. Med. Biol. Eng. Comput. 44, 445–450 (2006)

    Article  Google Scholar 

  23. Masuda T., Yokoya N.: A robust method for registration and segmentation of multiple range images. Comput. Vis. Image Understand. 61, 295–307 (1995)

    Article  Google Scholar 

  24. Millstein P., Maya A.: An evaluation of occlusal contact marking indicators: a descriptive quantitative method. J. Am. Dent. Assoc. 132, 1280–1286 (2001)

    Google Scholar 

  25. Millstein P.L.: A method to determine occlusal contact and noncontact areas: preliminary report. J. Prosthet. Dent. 52, 106–110 (1984)

    Article  Google Scholar 

  26. Norel R., Lin S., Wolfson H., Nussinov R.: Shape complementarity at protein–protein interfaces. Biopolymers 34, 933–940 (1994)

    Article  Google Scholar 

  27. Norel R., Petrey D., Wolfson H., Nussinov R.: Examination of shape complementarity in docking of unbound proteins. Proteins Struct. Function Genet. 36, 307–317 (1999)

    Article  Google Scholar 

  28. Norel R., Wolfson H., Nussinov R.: Small molecule recognition: solid angles surface representation and molecular shape complementarity. Combin. Chem. High Throughput Screening 2, 223–236 (1999)

    Google Scholar 

  29. Pongracz F., Bardosi Z.: Dentition planning with image-based occlusion analysis. Int. J. CARS 1, 149–156 (2006)

    Article  Google Scholar 

  30. Rinchuse D.J.: A three-dimensional comparison of condylar change between centric relation and centric occlusion using mandibular position indicator. Am. J. Orthodont. Dentofacial Orthop. 107, 319–328 (1995)

    Article  Google Scholar 

  31. Ritchie D., Kemp G.: Protein docking using spherical polar fourier correlations. Proteins Struct. Function Genet. 39, 178–194 (2000)

    Article  Google Scholar 

  32. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: IEEE International Conference on 3D Digital Imaging and Modeling, pp. 145–152, Quebec, Canada (2001)

  33. Wolfson, H., Lamdan, Y.: Geometric hashing: a general and efficient model-based recognition scheme. In: Proc. IEEE International Conference on Computer Vision (ICCV’88), pp. 238–249, Tampa, Finland (1988)

  34. Zhang Z.: Iterative point matching for registration of free-form curves. Int. J. Comput. Vis. 13, 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Hiew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiew, L.T., Ong, S.H. & Foong, K.W.C. Optimal occlusion of teeth using planar structure information. Machine Vision and Applications 21, 735–747 (2010). https://doi.org/10.1007/s00138-009-0191-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-009-0191-1

Keywords

Navigation