[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Classification of face images using local iterated function systems

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

There has been an increasing interest in face recognition in recent years. Many recognition methods have been developed so far, some very encouraging. A key remaining issue is the existence of variations in the input face image. Today, methods exist that can handle specific image variations. But we are yet to see methods that can be used more effectively in unconstrained situations. This paper presents a method that can handle partial translation, rotation, or scale variations in the input face image. The principal is to automatically identify objects within images using their partial self-similarities. The paper presents two recognition methods which can be used to recognise objects within images. A face recognition system is then presented that is insensitive to limited translation, rotation, or scale variations in the input face image. The performance of the system is evaluated through four experiments. The results show that the system achieves higher recognition rates than those of a number of existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Psychological Image Collection at Stirling. URL http://pics.psych.stir.ac.uk/

  2. Abate A., Distasi R., Nappi M. and Riccio D. (2006). Face authentication using speed fractal technique. Image Vision Comput. 24(9): 977–986

    Article  Google Scholar 

  3. Abate, A., Riccio, M.N.D., Tortora, G.: An ifs based approach for face recognition. In: Proc. IEEE International Conference on Image Processing, vol. II, pp. 938–41 (2005)

  4. Ansari, A.N., Abdel-Mottaleb, M.: 3D face modeling using two views and a generic face model with application to 3d face recognition. In: Proc. IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 37–44 (2003)

  5. Arandjelovic O. and Cipolla R. (2006). An information-theoretic approach to face recognition from face motion manifolds. Image Vision Comput. 24(6): 639–647

    Article  Google Scholar 

  6. Bach F.R. and Jordan M.I. (2002). Kernel independent component analysis. J. Mach. Learn. Res. 3: 1–48

    Article  MathSciNet  Google Scholar 

  7. Barnsley M. (1988). Fractals Everywhere. Academic Press, San Diego

    MATH  Google Scholar 

  8. Barnsley, M., Hurd, L.: Fractal Image Compression. AK Peters Ltd, (1993)

  9. Barthel, K., Voye, T.: Adaptive fractal image coding in the frequency domain. In: Proc. Int. Workshop on Image Processing, Budapest, Hungary pp. 33–38. (1994)

  10. Barthel, K., Voye, T., Noll, P.: Improved fractal image coding. In: Proc. Int. Picture Coding Symp., pp. 1–5 (1993)

  11. Bartlett M.S., Movellan J.R. and Sejnowski T.J. (2002). Face recognition by independent component analysis. IEEE Trans. Neural Networks 13(6): 1450–1464

    Article  Google Scholar 

  12. Beymer, D., Poggio, T.: Face recognition from one example view. Tech. Rep. 1536, MIT AI Lab. (1995)

  13. Bichsel, M.: Strategies of robust object recognition for the identification of human faces. Ph.D. thesis, Eidgenossischen Technischen Hochschule, Zurich (1991)

  14. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proc. of the SIGGRAPH’99, Los Angeles, USA pp. 187–194. (1999)

  15. Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches to three-dimensional face recognition. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 1, pp. 358–361 (2004)

  16. Brunelli R. and Poggio T. (1992). Face recognition through geometrical features. Lecture Notes in Computer Science 588: 792–800

    Google Scholar 

  17. Brunelli R. and Poggio T. (1993). Face recognition: Features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10): 1042–1052

    Article  Google Scholar 

  18. Buhmann, J., Lange, J., v d Malsburg, C.: Distortion invariant object recognition by matching hierarchically labeled graphs. In: Proc. IJCNN’89, pp. 151–159 (1989)

  19. Chellappa R., Wilson C. and Sirohey S. (1995). Human and machine recognition of faces: A survey. Proc. IEEE 83(5): 705–740

    Article  Google Scholar 

  20. Cootes T., Cooper D., Taylor C. and Graham J. (1995). Active shape models - their training and application. Comput. Vision Image Understand. 61(1): 38–59

    Article  Google Scholar 

  21. Cootes, T., Taylor, C.: Active shape models - smart snakes. In: Proc. British Machine Vision Conference, pp. 266–275 (1992)

  22. Cox, I.J., Ghosn, J., Yianilos, P.N.: Feature-based face recognition using mixture-distance. In: Proc. of 1996 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’96), pp. 209–216 (1996)

  23. Craw, Ellis, Lishman: Automatic extraction of face features. Pattern Recognition Lett., pp. 183–187 (1987)

  24. Davoine F., Antonini M., Chassery J. and Barlaud M. (1996). Fractal image compression based on delaunay triangulation and vector quantisation. IEEE Trans. Image Process. 5(2): 338–346

    Article  Google Scholar 

  25. Davoine, F., Svensson, J., Chassery, J.: A mixed triangular and quadrilateral partition for fractal image coding. In: Proc. IEEE Int. Conf. on Image Processing. Washington, DC, USA pp. 284–287 (1995)

  26. Distasi R., Nappi M. and Tucci M. (2003). Fire: fractal indexing with robust extensions for image databases. IEEE Trans. Image Process. 12(3): 373–384

    Article  Google Scholar 

  27. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, (2000)

  28. Er M.J., Chen W. and Wu S. (2005). High-speed face recognition based on discrete cosine transform and RBF neural networks. IEEE Trans. Neural Networks 16(3): 679–691

    Article  Google Scholar 

  29. Eriksson, A., Weber, D.: Towards 3-dimensional face recognition. In: Proc. of the 5th IEEE AFRICON, vol. 1, pp. 401–406 (1999)

  30. Face Recognition Homepage: (2005). URL http://www.face-rec.org/

  31. Face Recognition Vendor Test: URL http://www.frvt.org/

  32. Fisher, Y. (ed.)(1995). Fractal Image Compression: Theory and Application. Springer, New York

    Google Scholar 

  33. Fishler M. and Elschlager R. (1973). The representation and matching of pictorial structures. IEEE Trans. Comput. c-22(1): 67–92

    Article  Google Scholar 

  34. Frigaard, C., Gade, J., Hemmingsen, T., Sand, T.: Image compression based on fractal theory. Tech. Rep. S701, Inst. for Electronics Systems, Aalborg University, Denmark (1994)

  35. Gao Y. and Leung M. (2002). Face recognition using line edge map. IEEE Trans. Pattern Anal. Mach. Intell. 24(6): 764–779

    Article  Google Scholar 

  36. Gao Y., Leung M., Hui S. and Tananda M. (2003). Facial expression recognition from line-based caricatures. IEEE Trans. Syst. Man Cybernet. Part A 33(3): 407–412

    Article  Google Scholar 

  37. Georghiades A.S., Belhumeur P.N. and Kriegman D.J. (2001). From few to many: illumination cone models for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 23(6): 643–660

    Article  Google Scholar 

  38. Gonzalez, R.C.,Woods,R.E.: Digital Image Processing (2nd edn.). Prentice Hall, (2002)

  39. Heisele, B., Ho, P., Poggio, T.: Face recognition with support vector machines: Global versus component-based approach. In: Proc. of the Eighth IEEE International Conference on Computer Vision, Vancouver, Canada vol. 2, pp. 688–694 (2001)

  40. Hesher, C., Srivastava, A., Erlebacher, G.: A novel technique for face recognition using range imaging. In: Proc. Seventh International Symposium on Signal Processing and Its Applications, pp. 201–204 (2003)

  41. Hill, A., Thornham, A., Taylor, C.: Model-based interpretation of 3d medical images. In: Proc. 4th British Machine Vision Conference, Guilford, England pp. 339–348. (1993)

  42. Huang, J., Heisele, B., Blanz, V.: Component-based face recognition with 3d morphable models. In: Proc. of the 4th International Conference on Audio- and Video-Based Biometric Person Authentication, pp. 23–34. Guildford, UK (2003)

  43. Hutchinson J. (1981). Fractals and self-similarity. Indiana Univ. Math. J. 30(5): 713–747

    Article  MATH  MathSciNet  Google Scholar 

  44. Jacquin A. (1993). Fractal image coding: a review. Proc. IEEE 81(10): 1451–1465

    Article  Google Scholar 

  45. Kadyrov A. and Petrou M. (2001). The trace transform and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 8(23): 811–828

    Article  Google Scholar 

  46. Kanade, T.: Picture processing system by computer complex and recognition of human faces. Ph.D. thesis, Depertment of Information Science, Kyoto University (1973)

  47. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. In: Proc. 1st International Conference on Computer Vision. London (1987)

  48. Kim, C., Kim, R., Lee, S.: Novel fractal image compression method with non-iterative decoder. In: Proc. IEEE Int. Conf. on Image Processing Washington, DC, USA vol. III, pp. 268–271 (1995)

  49. Kim, H., Pang, S., Je, H., Kim, D., Ban, S.: Pattern Recognition with Support Vector Machines: First International Workshop, SVM 2002 Proceedings, chap. Support Vector Machine Ensemble with Bagging. Springer, Heidelberg (2002)

  50. Kirby M. and Sirovich L. (1990). Application of the Karhunen–Loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1): 103–108

    Article  Google Scholar 

  51. Kohonen T. (1984). Self-Organization and Associative Memory. Springer, Berlin

    MATH  Google Scholar 

  52. Komleh, H., Chandran, V., Sridharan, S.: Face recognition using fractal codes. In: Proc. Int. Conf. on Image Processing, Thessaloniki, Greece vol. 3, pp. 58–61 (2001)

  53. Kosugi, M.: Robust identification of human faces using mosaic pattern and bnp. In: Proc. Int. Conf. on Neural Networks for Signal Processing, pp. 209–305 (1992)

  54. Kouzani, A., Nahavandi, S.: Facial features for identification. In: Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 1372–1377 (2000)

  55. Kruizinga, P., Petkov, N.: Optical flow applied to person identification. In: Proc. 1994 EUROSIM Conference on Massively Parallel Processing Applications and Development, Delft, The Netherlands pp. 871–878 (1994)

  56. Kukula, E., Elliott, S.J., Waupotitsch, R., Pesenti, B.: Effects of illumination changes on the performance of geometrix facevision 3D FRS. In: Proc. 38th Annual International Carnahan Conference on Security Technology, pp. 331–337 (2004)

  57. Lades M., Vorbruggen J., Buhmann J., Lange J., Malsburg C., Wurtz R. and Konen W. (1993). Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42(3): 300–311

    Article  Google Scholar 

  58. Lawrence S., Giles C., Tsoi A. and Back A. (1997). Face recognition: A convolutional neural network approach. IEEE Trans. Neural Networks 8(1): 98–113

    Article  Google Scholar 

  59. Lin S., Kung S. and Lin L. (1997). Face recognition/detection by probablistic decision-based neural networks. IEEE Trans. Neural Networks 8(1): 114–132

    Article  Google Scholar 

  60. Liu C. (2004). Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(5): 572–581

    Article  Google Scholar 

  61. Lu J., Plataniotis K., Venetsanopoulos A. and Li S. (2006). Ensemble-based discriminant learning with boosting for face recognition. IEEE Trans. Neural Networks 17(1): 166–178

    Article  Google Scholar 

  62. Mandelbrot B. (1983). The Fractal Geometry of Nature. Freeman and Company, New York

    Google Scholar 

  63. Martinez A. (2002). Recognizing imprecisely localized, partially occluded andexpression variant faces from a single sample per class. IEEE Trans. Pattern Anal. Mach. Intell. 24(6): 748–763

    Article  Google Scholar 

  64. Martinez A. (2003). Matching expression variant faces. Vision Res. 43(9): 1047–1060

    Article  Google Scholar 

  65. Martinez A. and Kak A. (2001). Pca versus lda. IEEE Trans. Pattern Anal. Mach. Intell. 23(2): 228–233

    Article  Google Scholar 

  66. Nefian, A.V., Hayes, M.H.: Hidden Markov models for face recognition. In: Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2721–2724. Seattle, Washington, USA (1998)

  67. Park B., Lee K. and Lee S. (2005). Face recognition using face-arg matching. IEEE Trans. Pattern Anal. Mach. Intell. 27(12): 1982–1988

    Article  Google Scholar 

  68. Penev, P.: Local feature analysis: A statistical theory for information representation and transformation. Ph.D. thesis, Laboratory of Computational Neuroscience, The Rockefeller University (1998)

  69. Pentland A. and Choudhury T. (2000). Face recognition for smart environments. IEEE Comput. 33(2): 50–55

    Google Scholar 

  70. Pentland, A., Moghadam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 84–91 (1994)

  71. Yan R.: MatlabArsenal. http://finalfantasyxi.inf.cs.cmu.edu/MATLABArsenal/MATLABArsenal.htm

  72. Rauss, P., Phillips, J., Hamilton, M., DePersia, A.T.: FERET (Face-Recognition Technology) Recognition Algorithms. In: Proc. ATRWG Science and Technology Conference (1996)

  73. Reusens, E.: Partitioning complexity issue for iterated function systems based image coding. In: Proc. EUSIPCO’94, Edinburgh, Scotland vol. 1, pp. 171–174. (1994)

  74. Samal A. and Iyengar P. (1992). Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern Recognition 25(1): 65–77

    Article  Google Scholar 

  75. Saupe, D.: Accelerating fractal image compression by multi-dimensional nearest neighbour search. In: Proc. IEEE Data Compression Conference, Snowbird UT, USA pp. 222–231 (1995)

  76. Saupe, D.: Lean domain pools for fractal image compression. In: Still-Image Compression II, SPIE Proc., San Jose, CA, USA vol. 2669, pp. 150–157 (1996)

  77. Saupe, D., Hartenstein, H.: Lossless acceleration of fractal image compression by fast convolution. In: Proc. IEEE Int. Conf. on Image Processing, Lausanne, Switzerland pp. 185–188 (1996)

  78. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall, (2001)

  79. Shen, X., Hogg, D.: 3d shape recovery using a deformale model. In: Hancock, E. (ed.) Proc. British Machine Vision Conference, BMVA Press pp. 387–396 (1994)

  80. Srisuk, S., Petrou, M., Kurutach, W., Kadyrov, A.: Face authentication using the trace transform. In: Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA pp. 305–312 (2003)

  81. Tan, T., Yan, H.: Object recognition using fractal neighbor distance: Eventual convergence and recognition rates. In: Proc. 15th International Conference on Pattern Recognition, vol. 2, p. 2781 (2000)

  82. Tan T. and Yan H. (2005). Face recognition using the weighted fractal neighbor distance. IEEE Trans. Syst., Man and Cybernet. Part C, Appl. Rev. 35(4): 576–582

    Article  Google Scholar 

  83. Tan X., Chen S., Zhou Z. and Zhang F. (2006). Face recognition from a single image per person: A survey. Pattern Recognition 39(9): 1725–1745

    Article  MATH  Google Scholar 

  84. Temdee, P., Khawparisuth, D., Chamnonglhai, K.: Face recognition by using fractal encoding and backpropagationneural network. In: Proc. the Fifth International Symposium on Signal Processing and its Applications, Brisbane, Qld., Australia vol. 1, pp. 159–161 (1999)

  85. The Color FERET Database: http://www.itl.nist.gov/iad/humanid/colorferet/home.html

  86. The PIE Database: http://www.ri.cmu.edu/projects/project_418.html

  87. The YALE Database: http://cvc.yale.edu/projects/yalefaces/yalefaces.html

  88. Ting K. and Zheng Z. (2003). A study of adaboost with naive bayesian classifiers: Weakness and improvement. Comput. Intell. 19(2): 873–880

    Article  MathSciNet  Google Scholar 

  89. Tolba A.S., El-Baz A.H. and El-Harby A.A. (2005). Face recognition: a literature review. Int. J. Signal Proces. 2(1): 88–103

    Google Scholar 

  90. Turk M. and Pentland A. (1991). Eigenfaces for recognition. J. Cognit. Neurosci. 3(1): 71–86

    Article  Google Scholar 

  91. Vapnik V. (1999). The Nature of Statistical Learning Theory. Springer, Heidelberg

    Google Scholar 

  92. Wiskott L., Fellous J., Kruger N. and Malsburg C. (1997). Face recognition by elastic bunch graph matching. IEEE Trans. Patt. Anal. Machine Intell. 19: 775–779

    Article  Google Scholar 

  93. Wong, K., Law, H., Tsang, P.: A system for recognising human faces. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 1638–1642 (1989)

  94. Xu, C., Wang, Y., Tan, T., Quan, L.: Automatic 3D face recognition combining global geometric features with local shape variation information. In: Proc. of the Sixth IEEE International Conference onAutomatic Face and Gesture Recognition, pp. 308–313 (2004)

  95. Yacoob, Y., Davis, L.: Smiling faces are better for face recognition. In: Proc. of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 52–57 (2002)

  96. Yang, M.H.: Kernel eigenfaces vs. kernel fisherfaces: Face recognition using kernel methods. In: Proc. of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, Washington DC, USA pp. 215–220 (2002)

  97. Yuille A., Hallinan P. and Cohen D. (1992). Feature extraction from faces using deformable templates. Int. J. Comput. Vision 8(2): 99–111

    Article  Google Scholar 

  98. Zhao W., Chellappa R., Rosenfeld A. and Phillips P.J. (2003). Face recognition: A literature survey. ACM Comput. Surv. 35(4): 399–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. Kouzani.

Additional information

The author would like to thank the Australian Research Council (ARC) which supports this research with a Discovery Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouzani, A.Z. Classification of face images using local iterated function systems. Machine Vision and Applications 19, 223–248 (2008). https://doi.org/10.1007/s00138-007-0095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0095-x

Keywords

Navigation