Abstract
Cancer is the second-leading disease-related cause of global mortality after cardiovascular disease. Despite significant advances in cancer therapeutic strategies, cancer remains one of the major obstacles to human life extension. Cancer pathogenesis is extremely complicated and not fully understood. Epithelial splicing regulatory proteins (ESRPs), including ESRP1 and ESRP2, belong to the heterogeneous nuclear ribonucleoprotein family of RNA-binding proteins and are crucial regulators of the alternative splicing of messenger RNAs (mRNAs). The expression and activity of ESRPs are modulated by various mechanisms, including post-translational modifications and non-coding RNAs. Although a growing body of evidence suggests that ESRP dysregulation is closely associated with cancer progression, the detailed mechanisms remain inconclusive. In this review, we summarize recent findings on the structures, functions, and regulatory mechanisms of ESRPs and focus on their underlying mechanisms in cancer progression. We also highlight the clinical implications of ESRPs as prognostic biomarkers and therapeutic targets in cancer treatment. The information reviewed herein could be extremely beneficial to the development of individualized therapeutic strategies for cancer patients.
Similar content being viewed by others
Availability of data and materials
Not applicable.
References
Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P et al (2022) Early detection of cancer. Science 375:eaay9040. https://doi.org/10.1126/science.aay9040
Wang M, Yu F, Zhang Y, Chang W, Zhou M (2022) The effects and mechanisms of flavonoids on cancer prevention and therapy: focus on gut microbiota. Int J Biol Sci 18:1451–1475. https://doi.org/10.7150/ijbs.68170
Wang M, Chen X, Yu F, Ding H, Zhang Y, Wang K (2021) Extrachromosomal circular DNAs: origin, formation and emerging function in cancer. Int J Biol Sci 17:1010–1025. https://doi.org/10.7150/ijbs.54614
Shan P, Yang F, Qi H, Hu Y, Zhu S, Sun Z, Zhang Z, Wang C, Hou C, Yu J et al (2021) Alteration of MDM2 by the small molecule YF438 exerts antitumor effects in triple-negative breast cancer. Cancer Res 81:4027–4040. https://doi.org/10.1158/0008-5472.CAN-20-0922
Schumacher TN, Thommen DS (2022) Tertiary lymphoid structures in cancer. Science 375: eabf9419. https://doi.org/10.1126/science.abf9419
Liu Y, Ao X, Zhou X, Du C, Kuang S (2022) The regulation of PBXs and their emerging role in cancer. J Cell Mol Med 26:1363–1379. https://doi.org/10.1111/jcmm.17196
Jonckheere S, Adams J, De Groote D, Campbell K, Berx G, Goossens S (2022) Epithelial-mesenchymal transition (EMT) as a therapeutic target. Cells Tissues Organs 211:157–182. https://doi.org/10.1159/000512218
Zhang YF, Shan C, Wang Y, Qian LL, Jia DD, Zhang YF, Hao XD, Xu HM (2020) Cardiovascular toxicity and mechanism of bisphenol A and emerging risk of bisphenol S. The Science of the total environment 723:137952. https://doi.org/10.1016/j.scitotenv.2020.137952
Gottgens EL, Span PN, Zegers MM (2016) Roles and regulation of epithelial splicing regulatory proteins 1 and 2 in epithelial-mesenchymal transition. Int Rev Cell Mol Biol 327:163–194. https://doi.org/10.1016/bs.ircmb.2016.06.003
Lyu J, Cheng C (2022) Regulation of alternative splicing during epithelial-mesenchymal transition. Cells Tissues Organs 211:238–251. https://doi.org/10.1159/000518249
Liu X, Wang Q, Song S, Feng M, Wang X, Li L, Liu Y, Shi C (2021) Epithelial splicing regulatory protein 1 is overexpressed in breast cancer and predicts poor prognosis for breast cancer patients. Medical science monitor : international medical journal of experimental and clinical research 27:e931102. https://doi.org/10.12659/MSM.931102
Carroll SH, Macias Trevino C, Li EB, Kawasaki K, Myers N, Hallett SA, Alhazmi N, Cotney J, Carstens RP, Liao EC (2020) An Irf6-Esrp1/2 regulatory axis controls midface morphogenesis in vertebrates. Development. https://doi.org/10.1242/dev.194498
Sagnol S, Marchal S, Yang Y, Allemand F, de Santa BP (2016) Epithelial splicing regulatory protein 1 (ESRP1) is a new regulator of stomach smooth muscle development and plasticity. Dev Biol 414:207–218. https://doi.org/10.1016/j.ydbio.2016.04.015
Deng G, Zhou X, Chen L, Yao Y, Li J, Zhang Y, Luo C, Sun L, Tang J (2020) High expression of ESRP1 regulated by circ-0005585 promotes cell colonization in ovarian cancer. Cancer Cell Int 20:174. https://doi.org/10.1186/s12935-020-01254-3
Hyun J, Al Abo M, Dutta RK, Oh SH, Xiang K, Zhou X, Maeso-Diaz R, Caffrey R, Sanyal AJ, Freedman JA et al (2021) Dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes hepatobiliary carcinogenesis in non-alcoholic fatty liver disease. J Hepatol 75:623–633. https://doi.org/10.1016/j.jhep.2021.04.033
Faux MC, King LE, Kane SR, Love C, Sieber OM, Burgess AW (2021) APC regulation of ESRP1 and p120-catenin isoforms in colorectal cancer cells. Mol Biol Cell 32:120–130. https://doi.org/10.1091/mbc.E20-05-0321
Gokmen-Polar Y, Neelamraju Y, Goswami CP, Gu Y, Gu X, Nallamothu G, Vieth E, Janga SC, Ryan M, Badve SS (2019) Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways. EMBO Rep. https://doi.org/10.15252/embr.201846078
Munkley J, Li L, Krishnan SRG, Hysenaj G, Scott E, Dalgliesh C, Oo HZ, Maia TM, Cheung K, Ehrmann I et al (2019) Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. Elife. https://doi.org/10.7554/eLife.47678
Hayakawa A, Saitoh M, Miyazawa K (2017) Dual roles for epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) in cancer progression. Adv Exp Med Biol 925:33–40. https://doi.org/10.1007/5584_2016_50
Schmidt C, Urlaub H (2017) Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr Opin Struct Biol 46:157–168. https://doi.org/10.1016/j.sbi.2017.10.005
Earl LA, Falconieri V, Milne JL, Subramaniam S (2017) Cryo-EM: beyond the microscope. Curr Opin Struct Biol 46:71–78. https://doi.org/10.1016/j.sbi.2017.06.002
Weisse J, Rosemann J, Krauspe V, Kappler M, Eckert AW, Haemmerle M, Gutschner T (2020) RNA-binding proteins as regulators of migration, invasion and metastasis in oral squamous cell carcinoma. Int J Mol Sci. https://doi.org/10.3390/ijms21186835
Lee S, Sears MJ, Zhang Z, Li H, Salhab I, Krebs P, Xing Y, Nah HD, Williams T, Carstens RP (2020) Cleft lip and cleft palate in Esrp1 knockout mice is associated with alterations in epithelial-mesenchymal crosstalk. Development. https://doi.org/10.1242/dev.187369
Wineberg Y, Bar-Lev TH, Futorian A, Ben-Haim N, Armon L, Ickowicz D, Oriel S, Bucris E, Yehuda Y, Pode-Shakked N et al (2020) Single-cell RNA sequencing reveals mRNA splice isoform switching during kidney development. J Am Soc Nephrol 31:2278–2291. https://doi.org/10.1681/ASN.2019080770
Rohacek AM, Bebee TW, Tilton RK, Radens CM, McDermott-Roe C, Peart N, Kaur M, Zaykaner M, Cieply B, Musunuru K et al (2017) ESRP1 mutations cause hearing loss due to defects in alternative splicing that disrupt cochlear development. Dev Cell 43(318–331):e315. https://doi.org/10.1016/j.devcel.2017.09.026
Bebee TW, Sims-Lucas S, Park JW, Bushnell D, Cieply B, Xing Y, Bates CM, Carstens RP (2016) Ablation of the epithelial-specific splicing factor Esrp1 results in ureteric branching defects and reduced nephron number. Dev Dyn 245:991–1000. https://doi.org/10.1002/dvdy.24431
Saeidi S, Shapouri F, de Iongh RU, Casagranda F, Sutherland JM, Western PS, McLaughlin EA, Familari M, Hime GR (2018) Esrp1 is a marker of mouse fetal germ cells and differentially expressed during spermatogenesis. PLoS ONE 13:e0190925. https://doi.org/10.1371/journal.pone.0190925
Jia J, Shi E, Zhou X, Zhu S, Li J, Zhang J, Yu J, Wang S, Feng L (2020) Expression of ESRP1 at human fetomaternal interface and involvement in trophoblast migration and invasion. Placenta 90:18–26. https://doi.org/10.1016/j.placenta.2019.11.005
Yu L, Zhang H, Guan X, Qin D, Zhou J, Wu X (2021) Loss of ESRP1 blocks mouse oocyte development and leads to female infertility. Development. https://doi.org/10.1242/dev.196931
Weng CM, Li Q, Chen KJ, Xu CX, Deng MS, Li T, Zhang DD, Duan ZX, Chen ZQ, Li GH et al (2020) Bleomycin induces epithelial-to-mesenchymal transition via bFGF/PI3K/ESRP1 signaling in pulmonary fibrosis. Biosci Rep. https://doi.org/10.1042/BSR20190756
Hyun J, Sun Z, Ahmadi AR, Bangru S, Chembazhi UV, Du K, Chen T, Tsukamoto H, Rusyn I, Kalsotra A et al (2020) Epithelial splicing regulatory protein 2-mediated alternative splicing reprograms hepatocytes in severe alcoholic hepatitis. J Clin Invest 130:2129–2145. https://doi.org/10.1172/JCI132691
Zuo YB, Zhang YF, Zhang R, Tian JW, Lv XB, Li R, Li SP, Cheng MD, Shan J, Zhao Z et al (2022) Ferroptosis in cancer progression: role of noncoding RNAs. Int J Biol Sci 18:1829–1843. https://doi.org/10.7150/ijbs.66917
Baeissa HM, Benstead-Hume G, Richardson CJ, Pearl FM (2016) Mutational patterns in oncogenes and tumour suppressors. Biochem Soc Trans 44:925–931. https://doi.org/10.1042/BST20160001
Ivanov I, Lo KC, Hawthorn L, Cowell JK, Ionov Y (2007) Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells. Oncogene 26:2873–2884. https://doi.org/10.1038/sj.onc.1210098
Li S, Yang S, Shi J, Ding Y, Gao W, Cheng M, Sun Y, Xie Y, Sang M, Yang H et al (2021) Recognition of the organ-specific mutations in metastatic breast cancer by circulating tumor cells isolated in vivo. Neoplasma 68:31–39. https://doi.org/10.4149/neo_2020_200317N275
Horvath A, Pakala SB, Mudvari P, Reddy SD, Ohshiro K, Casimiro S, Pires R, Fuqua SA, Toi M, Costa L et al (2013) Novel insights into breast cancer genetic variance through RNA sequencing. Sci Rep 3:2256. https://doi.org/10.1038/srep02256
Deloria AJ, Hoflmayer D, Kienzl P, Lopatecka J, Sampl S, Klimpfinger M, Braunschmid T, Bastian F, Lu L, Marian B et al (2016) Epithelial splicing regulatory protein 1 and 2 paralogues correlate with splice signatures and favorable outcome in human colorectal cancer. Oncotarget 7:73800–73816. https://doi.org/10.18632/oncotarget.12070
Micheli G, Camilloni G (2022) Can introns stabilize gene duplication? Biology (Basel). https://doi.org/10.3390/biology11060941
Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, Heckmann D, Sidiropoulos N, Waszak SM, Hubschmann D et al (2018) Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell 34(996–1011):e1018. https://doi.org/10.1016/j.ccell.2018.10.016
Wang X, Liu Y, Shao D, Qian Z, Dong Z, Sun Y, Xing X, Cheng X, Du H, Hu Y et al (2016) Recurrent amplification of MYC and TNFRSF11B in 8q24 is associated with poor survival in patients with gastric cancer. Gastric Cancer 19:116–127. https://doi.org/10.1007/s10120-015-0467-2
Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38. https://doi.org/10.1038/npp.2012.112
Ao X, Ding W, Zhang Y, Ding D, Liu Y (2020) TCF21: a critical transcription factor in health and cancer. J Mol Med (Berl) 98:1055–1068. https://doi.org/10.1007/s00109-020-01934-7
Jeong HM, Han J, Lee SH, Park HJ, Lee HJ, Choi JS, Lee YM, Choi YL, Shin YK, Kwon MJ (2017) ESRP1 is overexpressed in ovarian cancer and promotes switching from mesenchymal to epithelial phenotype in ovarian cancer cells. Oncogenesis 6:e389. https://doi.org/10.1038/oncsis.2017.87
Ashok C, Ahuja N, Natua S, Mishra J, Samaiya A, Shukla S (2021) E2F1 and epigenetic modifiers orchestrate breast cancer progression by regulating oxygen-dependent ESRP1 expression. Oncogenesis 10:58. https://doi.org/10.1038/s41389-021-00347-6
Teles SP, Oliveira P, Ferreira M, Carvalho J, Ferreira P, Oliveira C (2019) Integrated analysis of structural variation and RNA expression of FGFR2 and its splicing modulator ESRP1 highlight the ESRP1(amp)-FGFR2(norm)-FGFR2-IIIc(high) axis in diffuse gastric cancer. Cancers. https://doi.org/10.3390/cancers12010070
Legge D, Li L, Moriarty W, Lee D, Szemes M, Zahed A, Panousopoulos L, Chung WY, Aghabi Y, Barratt J et al (2022) The epithelial splicing regulator ESRP2 is epigenetically repressed by DNA hypermethylation in Wilms tumour and acts as a tumour suppressor. Mol Oncol 16:630–647. https://doi.org/10.1002/1878-0261.13101
Horiguchi K, Sakamoto K, Koinuma D, Semba K, Inoue A, Inoue S, Fujii H, Yamaguchi A, Miyazawa K, Miyazono K et al (2012) TGF-beta drives epithelial-mesenchymal transition through deltaEF1-mediated downregulation of ESRP. Oncogene 31:3190–3201. https://doi.org/10.1038/onc.2011.493
Reinke LM, Xu Y, Cheng C (2012) Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial-mesenchymal transition. J Biol Chem 287:36435–36442. https://doi.org/10.1074/jbc.M112.397125
Cui J, Ren P, Li Y, Ma Y, Wang J, Lin C, Jing L, Tong X, Ma S, Chen J (2021) ESRP1 as a prognostic factor of non-small-cell lung cancer is related to the EMT transcription factor of Twist. Thorac Cancer 12:2449–2457. https://doi.org/10.1111/1759-7714.14088
Gemmill RM, Roche J, Potiron VA, Nasarre P, Mitas M, Coldren CD, Helfrich BA, Garrett-Mayer E, Bunn PA, Drabkin HA (2011) ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett 300:66–78. https://doi.org/10.1016/j.canlet.2010.09.007
Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M et al (2016) ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 126:3219–3235. https://doi.org/10.1172/JCI76725
Zhang Y, Wei YJ, Zhang YF, Liu HW, Zhang YF (2021) Emerging functions and clinical applications of exosomal ncRNAs in ovarian cancer. Front Oncol 11:765458. https://doi.org/10.3389/fonc.2021.765458
Wang M, Yu F, Li P, Wang K (2020) Emerging function and clinical significance of exosomal circRNAs in cancer. Mol Ther Nucleic Acids 21:367–383. https://doi.org/10.1016/j.omtn.2020.06.008
Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J (2021) Mechanisms of action and clinical implications of microRNAs in the drug resistance of gastric cancer. Front Oncol 11:768918. https://doi.org/10.3389/fonc.2021.768918
Liu Y, Ding W, Yu W, Zhang Y, Ao X, Wang J (2021) Long non-coding RNAs: biogenesis, functions, and clinical significance in gastric cancer. Mol Ther Oncolytics 23:458–476. https://doi.org/10.1016/j.omto.2021.11.005
Gao XQ, Liu CY, Zhang YH, Wang YH, Zhou LY, Li XM, Wang K, Chen XZ, Wang T, Ju J et al (2022) The circRNA CNEACR regulates necroptosis of cardiomyocytes through Foxa2 suppression. Cell Death Differ 29:527–539. https://doi.org/10.1038/s41418-021-00872-2
Jia DD, Jiang H, Zhang YF, Zhang Y, Qian LL, Zhang YF (2022) The regulatory function of piRNA/PIWI complex in cancer and other human diseases: the role of DNA methylation. Int J Biol Sci 18:3358–3373. https://doi.org/10.7150/ijbs.68221
Pan Y, Zhao Y, Lihui L, Xie Y, Zou Q (2021) MiR-337-3p suppresses migration and invasion of breast cancer cells by downregulating ESRP1. Acta Histochem 123:151777. https://doi.org/10.1016/j.acthis.2021.151777
Toda H, Seki N, Kurozumi S, Shinden Y, Yamada Y, Nohata N, Moriya S, Idichi T, Maemura K, Fujii T et al (2020) RNA-sequence-based microRNA expression signature in breast cancer: tumor-suppressive miR-101-5p regulates molecular pathogenesis. Mol Oncol 14:426–446. https://doi.org/10.1002/1878-0261.12602
Heilmann K, Toth R, Bossmann C, Klimo K, Plass C, Gerhauser C (2017) Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer. Oncogene 36:6446–6461. https://doi.org/10.1038/onc.2017.246
Chen S, Wu W, Li QH, Xie BM, Shen F, Du YP, Zong ZH, Wang LL, Wei XQ, Zhao Y (2021) Circ-NOLC1 promotes epithelial ovarian cancer tumorigenesis and progression by binding ESRP1 and modulating CDK1 and RhoA expression. Cell Death Discov 7:22. https://doi.org/10.1038/s41420-020-00381-0
Yu S, Wang M, Zhang H, Guo X, Qin R (2021) Circ_0092367 inhibits EMT and gemcitabine resistance in pancreatic cancer via regulating the miR-1206/ESRP1 axis. Genes. https://doi.org/10.3390/genes12111701
Yue PJ, Sun YY, Li YH, Xu ZM, Fu WN (2020) MYCT1 inhibits the EMT and migration of laryngeal cancer cells via the SP1/miR-629-3p/ESRP2 pathway. Cell Signal 74:109709. https://doi.org/10.1016/j.cellsig.2020.109709
Huang H, Chen YF, Du X, Zhang C (2020) Identification and characterization of tumorigenic circular RNAs in cervical cancer. Cell Signal 73:109669. https://doi.org/10.1016/j.cellsig.2020.109669
Lu G, Duan J, Zhou D (2018) Long-noncoding RNA IFNG-AS1 exerts oncogenic properties by interacting with epithelial splicing regulatory protein 2 (ESRP2) in pituitary adenomas. Pathol Res Pract 214:2054–2061. https://doi.org/10.1016/j.prp.2018.09.023
Shen D, Ding L, Lu Z, Wang R, Yu C, Wang H, Zheng Q, Wang X, Xu W, Yu H et al (2022) METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination. Mol Ther Nucleic Acids 27:547–561. https://doi.org/10.1016/j.omtn.2021.12.024
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M (2019) Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci. https://doi.org/10.3390/ijms20246249
Zhang L, Zhang Y, Zhao Y, Wang Y, Ding H, Xue S, Li P (2018) Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. Expert Opin Ther Pat 28:591–601. https://doi.org/10.1080/13543776.2018.1503650
Zhang L, Zhang Y, Xue S, Ding H, Wang Y, Qi H, Wang Y, Zhu W, Li P (2020) Clinical significance of circulating microRNAs as diagnostic biomarkers for coronary artery disease. J Cell Mol Med 24:1146–1150. https://doi.org/10.1111/jcmm.14802
Liu Y, Ao X, Yu W, Zhang Y, Wang J (2022) Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. Mol Ther Nucleic Acids 27:50–72. https://doi.org/10.1016/j.omtn.2021.11.013
Wen ZJ, Xin H, Wang YC, Liu HW, Gao YY, Zhang YF (2021) Emerging roles of circRNAs in the pathological process of myocardial infarction. Mol Ther Nucleic Acids 26:828–848. https://doi.org/10.1016/j.omtn.2021.10.002
Zhang Y, Jia DD, Zhang YF, Cheng MD, Zhu WX, Li PF, Zhang YF (2021) The emerging function and clinical significance of circRNAs in thyroid cancer and autoimmune thyroid diseases. Int J Biol Sci 17:1731–1741. https://doi.org/10.7150/ijbs.55381
Zhang L, Wang Y, Yu F, Li X, Gao H, Li P (2021) CircHIPK3 plays vital roles in cardiovascular disease. Front Cardiovasc Med 8:733248. https://doi.org/10.3389/fcvm.2021.733248
Zhang L, Zhang Y, Wang Y, Zhao Y, Ding H, Li P (2020) Circular RNAs: functions and clinical significance in cardiovascular disease. Front Cell Dev Biol 8:584051. https://doi.org/10.3389/fcell.2020.584051
Zhao W, Cui Y, Liu L, Qi X, Liu J, Ma S, Hu X, Zhang Z, Wang Y, Li H et al (2020) Correction to: splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differ 27:2033–2034. https://doi.org/10.1038/s41418-019-0477-4
Liu Y, Ao X, Wang Y, Li X, Wang J (2022) Long non-coding RNA in gastric cancer: mechanisms and clinical implications for drug resistance. Front Oncol 12:841411. https://doi.org/10.3389/fonc.2022.841411
Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X et al (2019) FOXK transcription factors: regulation and critical role in cancer. Cancer Lett 458:1–12. https://doi.org/10.1016/j.canlet.2019.05.030
Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96:253–262. https://doi.org/10.1016/j.jprot.2013.11.014
Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X et al (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13:372–387. https://doi.org/10.1074/mcp.O113.027870
Gu H, Jan Fada B (2020) Specificity in ubiquitination triggered by virus infection. Int J Mol Sci. https://doi.org/10.3390/ijms21114088
Buneeva O, Medvedev A (2022) A typical ubiquitination and Parkinson’s disease. Int J Mol Sci. https://doi.org/10.3390/ijms23073705
Bei Y, Cheng N, Chen T, Shu Y, Yang Y, Yang N, Zhou X, Liu B, Wei J, Liu Q et al (2020) CDK5 inhibition abrogates TNBC stem-cell property and enhances anti-PD-1 therapy. Adv Sci (Weinh) 7:2001417. https://doi.org/10.1002/advs.202001417
Mizutani A, Koinuma D, Seimiya H, Miyazono K (2016) The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma. Oncogene 35:3514–3523. https://doi.org/10.1038/onc.2015.412
Xue X, Tian X, Zhang C, Miao Y, Wang Y, Peng Y, Qiu S, Wang H, Cui J, Cao L et al (2022) YAP ISGylation increases its stability and promotes its positive regulation on PPP by stimulating 6PGL transcription. Cell Death Discov 8:59. https://doi.org/10.1038/s41420-022-00842-8
Qu T, Zhang W, Qi L, Cao L, Liu C, Huang Q, Li G, Li L, Wang Y, Guo Q et al (2020) ISG15 induces ESRP1 to inhibit lung adenocarcinoma progression. Cell Death Dis 11:511. https://doi.org/10.1038/s41419-020-2706-7
Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, Liu X, Sun H, Pan Y, Wang S (2018) The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer 17:160. https://doi.org/10.1186/s12943-018-0914-x
Zhang H, Brown RL, Wei Y, Zhao P, Liu S, Liu X, Deng Y, Hu X, Zhang J, Gao XD et al (2019) CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev 33:166–179. https://doi.org/10.1101/gad.319889.118
Ahuja N, Ashok C, Natua S, Pant D, Cherian A, Pandkar MR, Yadav P, Vishnu NSS, Mishra J, Samaiya A et al (2020) Hypoxia-induced TGF-beta-RBFOX2-ESRP1 axis regulates human MENA alternative splicing and promotes EMT in breast cancer. NAR Cancer 2:zcaa021. https://doi.org/10.1093/narcan/zcaa021
Jolly MK, Preca BT, Tripathi SC, Jia D, George JT, Hanash SM, Brabletz T, Stemmler MP, Maurer J, Levine H (2018) Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioeng 2:031908. https://doi.org/10.1063/1.5024874
Kikuchi M, Yamashita K, Waraya M, Minatani N, Ushiku H, Kojo K, Ema A, Kosaka Y, Katoh H, Sengoku N et al (2016) Epigenetic regulation of ZEB1-RAB25/ESRP1 axis plays a critical role in phenylbutyrate treatment-resistant breast cancer. Oncotarget 7:1741–1753. https://doi.org/10.18632/oncotarget.6480
Hu J, Li G, Zhang P, Zhuang X, Hu G (2017) A CD44v(+) subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity. Cell Death Dis 8:e2679. https://doi.org/10.1038/cddis.2017.72
Yae T, Tsuchihashi K, Ishimoto T, Motohara T, Yoshikawa M, Yoshida GJ, Wada T, Masuko T, Mogushi K, Tanaka H et al (2012) Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 3:883. https://doi.org/10.1038/ncomms1892
Di Modugno F, Iapicca P, Boudreau A, Mottolese M, Terrenato I, Perracchio L, Carstens RP, Santoni A, Bissell MJ, Nistico P (2012) Splicing program of human MENA produces a previously undescribed isoform associated with invasive, mesenchymal-like breast tumors. Proc Natl Acad Sci U S A 109:19280–19285. https://doi.org/10.1073/pnas.1214394109
Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J, Cheng C (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 121:1064–1074. https://doi.org/10.1172/JCI44540
Fici P, Gallerani G, Morel AP, Mercatali L, Ibrahim T, Scarpi E, Amadori D, Puisieux A, Rigaud M, Fabbri F (2017) Splicing factor ratio as an index of epithelial-mesenchymal transition and tumor aggressiveness in breast cancer. Oncotarget 8:2423–2436. https://doi.org/10.18632/oncotarget.13682
Chen L, Yao Y, Sun L, Zhou J, Miao M, Luo S, Deng G, Li J, Wang J, Tang J (2017) Snail driving alternative splicing of CD44 by ESRP1 enhances invasion and migration in epithelial ovarian cancer. Cell Physiol Biochem 43:2489–2504. https://doi.org/10.1159/000484458
Bhattacharya R, Mitra T, Ray Chaudhuri S, Roy SS (2018) Mesenchymal splice isoform of CD44 (CD44s) promotes EMT/invasion and imparts stem-like properties to ovarian cancer cells. J Cell Biochem 119:3373–3383. https://doi.org/10.1002/jcb.26504
Ye X (2015) Confluence analysis of multiple omics on platinum resistance of ovarian cancer. Eur J Gynaecol Oncol 36:514–519
Lu X, Li R, Wang X, Guo Q, Wang L, Zhou X (2021) Overexpression of epithelial splicing regulatory protein 1 in metastatic lesions of serous ovarian carcinoma correlates with poor patient prognosis. Cancer Biother Radiopharm. https://doi.org/10.1089/cbr.2021.0215
Wu G, Li Z, Jiang P, Zhang X, Xu Y, Chen K, Li X (2017) MicroRNA-23a promotes pancreatic cancer metastasis by targeting epithelial splicing regulator protein 1. Oncotarget 8:82854–82871. https://doi.org/10.18632/oncotarget.20692
Ueda J, Matsuda Y, Yamahatsu K, Uchida E, Naito Z, Korc M, Ishiwata T (2014) Epithelial splicing regulatory protein 1 is a favorable prognostic factor in pancreatic cancer that attenuates pancreatic metastases. Oncogene 33:4485–4495. https://doi.org/10.1038/onc.2013.392
Yu M, Hong W, Ruan S, Guan R, Tu L, Huang B, Hou B, Jian Z, Ma L, Jin H (2019) Genome-wide profiling of prognostic alternative splicing pattern in pancreatic cancer. Front Oncol 9:773. https://doi.org/10.3389/fonc.2019.00773
Preca BT, Bajdak K, Mock K, Sundararajan V, Pfannstiel J, Maurer J, Wellner U, Hopt UT, Brummer T, Brabletz S et al (2015) A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer 137:2566–2577. https://doi.org/10.1002/ijc.29642
Chen ZH, Jing YJ, Yu JB, Jin ZS, Li Z, He TT, Su XZ (2019) ESRP1 induces cervical cancer cell G1-phase arrest via regulating cyclin A2 mRNA stability. Int J Mol Sci. https://doi.org/10.3390/ijms20153705
Ranieri D, Belleudi F, Magenta A, Torrisi MR (2015) HPV16 E5 expression induces switching from FGFR2b to FGFR2c and epithelial-mesenchymal transition. Int J Cancer 137:61–72. https://doi.org/10.1002/ijc.29373
Lee HH, Lee AJ, Park WS, Lee J, Park J, Park B, Joung JY, Lee KH, Hong D, Kim SH (2020) Epithelial splicing regulatory protein (ESPR1) expression in an unfavorable prognostic factor in prostate cancer patients. Front Oncol 10:556650. https://doi.org/10.3389/fonc.2020.556650
Jimenez N, Reig O, Montalbo R, Mila-Guasch M, Nadal-Dieste L, Castellano G, Lozano JJ, Victoria I, Font A, Rodriguez-Vida A et al (2020) Cell plasticity-related phenotypes and taxanes resistance in castration-resistant prostate cancer. Front Oncol 10:594023. https://doi.org/10.3389/fonc.2020.594023
Shah K, Gagliano T, Garland L, O’Hanlon T, Bortolotti D, Gentili V, Rizzo R, Giamas G, Dean M (2020) Androgen receptor signaling regulates the transcriptome of prostate cancer cells by modulating global alternative splicing. Oncogene 39:6172–6189. https://doi.org/10.1038/s41388-020-01429-2
Freytag M, Kluth M, Bady E, Hube-Magg C, Makrypidi-Fraune G, Heinzer H, Hoflmayer D, Weidemann S, Uhlig R, Huland H et al (2020) Epithelial splicing regulatory protein 1 and 2 (ESRP1 and ESRP2) upregulation predicts poor prognosis in prostate cancer. BMC Cancer 20:1220. https://doi.org/10.1186/s12885-020-07682-8
Stinnesbeck M, Kristiansen A, Ellinger J, Hauser S, Egevad L, Tolkach Y, Kristiansen G (2021) Prognostic role of TSPAN1, KIAA1324 and ESRP1 in prostate cancer. APMIS 129:204–212. https://doi.org/10.1111/apm.13117
Manco M, Ala U, Cantarella D, Tolosano E, Medico E, Altruda F, Fagoonee S (2021) The RNA-binding protein ESRP1 modulates the expression of RAC1b in colorectal cancer cells. Cancers. https://doi.org/10.3390/cancers13164092
Fagoonee S, Picco G, Orso F, Arrigoni A, Longo DL, Forni M, Scarfo I, Cassenti A, Piva R, Cassoni P et al (2017) The RNA-binding protein ESRP1 promotes human colorectal cancer progression. Oncotarget 8:10007–10024. https://doi.org/10.18632/oncotarget.14318
Vadlamudi Y, Kang SC (2022) Silencing ESRP1 expression promotes caspase-independent cell death via nuclear translocation of AIF in colon cancer cells. Cell Signal 91:110237. https://doi.org/10.1016/j.cellsig.2021.110237
Groulx JF, Boudjadi S, Beaulieu JF (2018) MYC regulates alpha6 integrin subunit expression and splicing under its pro-proliferative ITGA6A form in colorectal cancer cells. Cancers. https://doi.org/10.3390/cancers10020042
Wang Z, Zhang L, Xu W, Li J, Liu Y, Zeng X, Zhong M, Zhu Y (2022) The multi-omics analysis of key genes regulating EGFR-TKI Resistance, immune infiltration, SCLC transformation in EGFR-mutant NSCLC. J Inflamm Res 15:649–667. https://doi.org/10.2147/JIR.S341001
Zheng M, Niu Y, Bu J, Liang S, Zhang Z, Liu J, Guo L, Zhang Z, Wang Q (2021) ESRP1 regulates alternative splicing of CARM1 to sensitize small cell lung cancer cells to chemotherapy by inhibiting TGF-beta/Smad signaling. Aging 13:3554–3572. https://doi.org/10.18632/aging.202295
Voena C, Varesio LM, Zhang L, Menotti M, Poggio T, Panizza E, Wang Q, Minero VG, Fagoonee S, Compagno M et al (2016) Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1. Oncotarget 7:33316–33330. https://doi.org/10.18632/oncotarget.8955
Li L, Qi L, Qu T, Liu C, Cao L, Huang Q, Song W, Yang L, Qi H, Wang Y et al (2018) Epithelial splicing regulatory protein 1 inhibits the invasion and metastasis of lung adenocarcinoma. Am J Pathol 188:1882–1894. https://doi.org/10.1016/j.ajpath.2018.04.012
Seiz JR, Klinke J, Scharlibbe L, Lohfink D, Heipel M, Ungefroren H, Giehl K, Menke A (2020) Different signaling and functionality of Rac1 and Rac1b in the progression of lung adenocarcinoma. Biol Chem 401:517–531. https://doi.org/10.1515/hsz-2019-0329
Wang B, Li Y, Kou C, Sun J, Xu X (2020) Mining Database for the Clinical Significance and Prognostic Value of ESRP1 in Cutaneous Malignant Melanoma. Biomed Res Int 2020:4985014. https://doi.org/10.1155/2020/4985014
Yao J, Caballero OL, Huang Y, Lin C, Rimoldi D, Behren A, Cebon JS, Hung MC, Weinstein JN, Strausberg RL et al (2016) Altered expression and splicing of ESRP1 in malignant melanoma correlates with epithelial-mesenchymal status and tumor-associated immune cytolytic activity. Cancer Immunol Res 4:552–561. https://doi.org/10.1158/2326-6066.CIR-15-0255
Marzese DM, Liu M, Huynh JL, Hirose H, Donovan NC, Huynh KT, Kiyohara E, Chong K, Cheng D, Tanaka R et al (2015) Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome. Pigment Cell Melanoma Res 28:82–93. https://doi.org/10.1111/pcmr.12307
Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP (2009) ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 33:591–601. https://doi.org/10.1016/j.molcel.2009.01.025
Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, Motizuki M, Masuyama K, Miyazawa K (2014) Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem 289:27386–27399. https://doi.org/10.1074/jbc.M114.589432
Zhao W, Cui Y, Liu L, Qi X, Liu J, Ma S, Hu X, Zhang Z, Wang Y, Li H et al (2020) Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differ 27:919–933. https://doi.org/10.1038/s41418-019-0423-5
Pich K, Respekta N, Dawid M, Mlyczynska E, Kurowska P, Rak A (2021) New insights into cell apoptosis and proliferation: the potential role of vaspin. J Physiol Pharmacol. https://doi.org/10.26402/jpp.2021.6.02
Roy Burman D, Das S, Das C, Bhattacharya R (2021) Alternative splicing modulates cancer aggressiveness: role in EMT/metastasis and chemoresistance. Mol Biol Rep 48:897–914. https://doi.org/10.1007/s11033-020-06094-y
Liu Y (2019) Targeting the non-canonical AKT-FOXO3a axis: a potential therapeutic strategy for oral squamous cell carcinoma. EBioMedicine 49:6–8. https://doi.org/10.1016/j.ebiom.2019.10.020
Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A (2021) CD44: a multifunctional mediator of cancer progression. Biomolecules. https://doi.org/10.3390/biom11121850
Goel HL, Gritsko T, Pursell B, Chang C, Shultz LD, Greiner DL, Norum JH, Toftgard R, Shaw LM, Mercurio AM (2014) Regulated splicing of the alpha6 integrin cytoplasmic domain determines the fate of breast cancer stem cells. Cell Rep 7:747–761. https://doi.org/10.1016/j.celrep.2014.03.059
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X (2022) FOXO3a in cancer drug resistance. Cancer Lett 540:215724. https://doi.org/10.1016/j.canlet.2022.215724
Lu H, Shi C, Liu X, Liang C, Yang C, Wan X, Li L, Liu Y (2021) Identification of ZG16B as a prognostic biomarker in breast cancer. Open Med (Wars) 16:1–13. https://doi.org/10.1515/med-2021-0004
Ao X, Ding W, Ge H, Zhang Y, Ding D, Liu Y (2020) PBX1 is a valuable prognostic biomarker for patients with breast cancer. Exp Ther Med 20:385–394. https://doi.org/10.3892/etm.2020.8705
Funding
This work was supported by the China Postdoctoral Science Foundation (2018M642607).
Author information
Authors and Affiliations
Contributions
Ying Liu: writing—conceptualization, original draft preparation; writing—review and editing. Yiwen Li: data curation. Chengcheng Du: data curation. Shouxiang Kuang: data curation. Xuehao Zhou: data curation. Jinyu Zhang: data curation. Xiang Ao: review and editing, funding acquisition.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, Y., Li, Y., Du, C. et al. Underlying mechanisms of epithelial splicing regulatory proteins in cancer progression. J Mol Med 100, 1539–1556 (2022). https://doi.org/10.1007/s00109-022-02257-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00109-022-02257-5