[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On some direct and inverse problems for an integro-differential equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The direct and two inverse problems defined for an integro-differential equation on a bounded domain have been considered. The spectral problem of the integro-differential equation constitutes the Legendre differential equation in space variable. Finding a space-dependent source term whenever the data at some time, say T, as over-specified condition, constitutes the Ist inverse problem. The 2nd inverse problem consists of recovering a time-dependent coefficient in the source term from an integral type over-specified condition. The Fourier approach is used to have the analytical series solution of the problems. The existence and uniqueness results for the direct and inverse problems under certain regularity conditions on the data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not is applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ahmad, A., Ali, M., Malik, S.A.: Inverse problems for diffusion equation with fractional Dzherbashian-Nersesian operator. Fract. Calc. Appl. Anal. 24, 1899–1918 (2021). https://doi.org/10.1515/fca-2021-0082

    Article  MathSciNet  Google Scholar 

  2. Ali, M., Aziz, S., Malik, S.A.: Inverse problem for a multi-parameters space-time fractional diffusion equation with nonlocal boundary conditions: operational calculus approach. J. Pseudo Differ. Oper. Appl. 13, 3 (2022). https://doi.org/10.1007/s11868-021-00434-7

    Article  MathSciNet  Google Scholar 

  3. Bazhlekova, E., Bazhlekov, I.: Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation. J. Comput. Appl. Math. 386, 113213 (2021). https://doi.org/10.1016/j.cam.2020.113213

    Article  MathSciNet  Google Scholar 

  4. Bekbolat, B., Serikbaev, D., Tokmagambetov, N.: Direct and inverse problems for time-fractional heat equation generated by Dunkl operator. J. Inverse Ill-Posed Probl. (2022). https://doi.org/10.1515/jiip-2021-0008

    Article  Google Scholar 

  5. Cheng, J., Hofmann, B.: Regularization methods for ill-posed problems. In: Scherzer, O. (ed.) Chapter 28 of handbook of mathematical methods in imaging, pp. 87–109. Springer Science+Business Media LCC, New York (2011). https://doi.org/10.1007/978-1-4939-0790-8-3

    Chapter  Google Scholar 

  6. Durdiev, U.D.: A problem of identification of a special 2D memory kernel in an integro differential hyperbolic equation. Eurasian J. Math. Comput. Appl. 7, 4–19 (2019)

    Google Scholar 

  7. Ilyas, A., Malik, S.A., Saif, S.: Recovering source term and temperature distribution for nonlocal heat equation. Appl. Math. Comput. 439, 127610 (2023). https://doi.org/10.1016/j.amc.2022.127610

    Article  MathSciNet  Google Scholar 

  8. Ilyas, A., Malik, S.A.: An inverse source problem for anomalous diffusion equation with generalized fractional derivative in time. Acta Appl. Math. 181, 15 (2022)

    Article  MathSciNet  Google Scholar 

  9. Ilyas, A., Malik, S.A., Saif, S.: Inverse problems for a multi-term time fractional evolution equation with an involution. Inverse Probl. Sci. Eng. 29, 3377–3405 (2021). https://doi.org/10.1080/17415977.2021.2000606

    Article  MathSciNet  Google Scholar 

  10. Javed, S., Malik, S.A.: Some inverse problems for fractional integro-differential equation involving two arbitrary kernels. Z. fur Angew. Math. Phys. 73, 140 (2022). https://doi.org/10.1007/s00033-022-01770-4

    Article  MathSciNet  Google Scholar 

  11. Jin, B., Zou, J.: Augmented Tikhonov regularization. Inverse Probl. 25, 025001 (2009). https://doi.org/10.1088/0266-5611/25/2/025001

    Article  MathSciNet  Google Scholar 

  12. Kian, Y., Li, Z., Liu, Y., Yamamoto, M.: The uniqueness of inverse problems for a fractional equation with a single measurement. Math. Ann. 380, 1465–1495 (2021). https://doi.org/10.1007/s00208-020-02027-z

    Article  MathSciNet  Google Scholar 

  13. Kabanikhin, S.I.: Definitions and examples of inverse and ill-posed problems. J. Inverse Ill-Posed Probl. 3, 17–357 (2008). https://doi.org/10.1515/JIIP.2008.019

    Article  MathSciNet  Google Scholar 

  14. Kaplan, W.: Advanced Calculus, 5th edn. Pearson, London (2002)

    Google Scholar 

  15. Kirane, M., Malik, S.A., Al-Gwaiz, M.A.: An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math. Methods Appl. Sci 36, 1056–1069 (2013). https://doi.org/10.1002/mma.2661

    Article  MathSciNet  Google Scholar 

  16. Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam 24, 207–233 (1999)

    MathSciNet  Google Scholar 

  17. Malik, S.A., Ilyas, A., Samreen, A.: Simultaneous determination of a source term and diffusion concentration for a multi-term space-time fractional diffusion equation. Math. Model. Anal. 26, 411–431 (2021). https://doi.org/10.3846/mma.2021.11911

    Article  MathSciNet  Google Scholar 

  18. Metzler, R., Jeon, J.H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014). https://doi.org/10.1039/C4CP03465A

    Article  Google Scholar 

  19. Nguyen, N.V., Thang, N.V., Thånh, N.T.: The quasi-reversibility method for an inverse source problem for time-space fractional parabolic equations. J. Differ. Equ. 344, 102–130 (2023). https://doi.org/10.1016/j.jde.2022.10.029

    Article  MathSciNet  Google Scholar 

  20. Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus, vol. 4. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-6042-7

    Book  Google Scholar 

  21. Sakamoto, K., Yamamoto, M.: Initial value/boudary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011). https://doi.org/10.1016/j.jmaa.2011.04.058

    Article  MathSciNet  Google Scholar 

  22. Sandev, T., Metzler, R., Chechkin, A.: From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 21, 10–28 (2018)

    Article  MathSciNet  Google Scholar 

  23. Sandev, T., Sokolov, I.M., Metzler, R., Chechkin, A.: Beyond monofractional kinetics. Chaos Solitons Fractals 102, 210–217 (2017). https://doi.org/10.1016/j.chaos.2017.05.001

    Article  MathSciNet  Google Scholar 

  24. Song, S., Zhang, X., Li, C., Wang, K., Sun, X., Ma, Y.: Anomalous diffusion models in frequency-domain characterization of lithium-ion capacitors. J. Power Sour. 490, 229332 (2021). https://doi.org/10.1016/j.jpowsour.2020.229332

    Article  Google Scholar 

  25. Suhaib, K., Ilyas, A., Malik, S.A.: On the inverse problems for a family of integro-differential equations. Math. Model. Anal. 28, 255–270 (2023). https://doi.org/10.3846/mma.2023.16139

    Article  MathSciNet  Google Scholar 

  26. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019). https://doi.org/10.1016/j.jmaa.2019.03.052

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed and reviewed the manuscript.

Corresponding author

Correspondence to Asim Ilyas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, A., Iqbal, Z. & Malik, S.A. On some direct and inverse problems for an integro-differential equation. Z. Angew. Math. Phys. 75, 39 (2024). https://doi.org/10.1007/s00033-024-02186-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02186-y

Mathematics Subject Classification

Navigation