[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hyperbolicity of the ballistic-conductive model of heat conduction: the reverse side of the coin

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The heat equation, based on Fourier’s law, is commonly used for description of heat conduction. However, Fourier’s law is valid under the assumption of local thermodynamic equilibrium, which is violated in very small dimensions and short timescales, and at low temperatures. In the paper Kovács and Ván (Int J Heat Mass Transf 83:613–620, 2015), a ballistic-conductive (BC) model of heat conduction was developed. In this paper, we study the behavior of solutions to an initial value problem in 1D in the framework of the linearized BC model. As a result of the study, an unphysical effect has been found when part of the initial thermal energy does not spread anywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

Notes

  1. Refs. [14, 20] discuss mass transfer. However, the obtained unphysical solutions of the telegraph equation in 2D and 3D, when they may take negative values, even if the initial values are non-negative, apply to the hyperbolic heat equation as well.

  2. In Refs. [49,50,51,52] the dimensionless temperature T is multiplied by a coefficient \(\tau _{\Delta }^{}\). Its presence or absence does not affect the conclusions of this paper.

References

  1. de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, Mineola (1984)

    Google Scholar 

  2. Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, Chichester (2015)

    Google Scholar 

  3. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    MathSciNet  Google Scholar 

  4. Joseph, D.D., Preziosi, L.: Addendum to the paper “Heat waves’’. Rev. Mod. Phys. 62, 375–391 (1990)

    Google Scholar 

  5. Dreyer, W., Struchtrup, H.: Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)

    MathSciNet  Google Scholar 

  6. Guo, Y., Wang, M.: Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015)

    MathSciNet  Google Scholar 

  7. Jou, D., Cimmelli, V.A.: Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: an overview. Commun. Appl. Ind. Math. 7(2), 196–222 (2016)

    MathSciNet  Google Scholar 

  8. Both, S., Czél, B., Fülöp, T., Gróf, G., Gyenis, A., Kovács, R., Ván, P., Verhás, J.: Deviation from the Fourier law in room-temperature heat pulse experiments. J. Non-Equilib. Thermodyn. 41, 41–48 (2016)

    Google Scholar 

  9. Zhang, Z.M.: Nano/Microscale Heat Transfer. Springer, Cham (2020)

    Google Scholar 

  10. Chen, G.: Non-Fourier phonon heat conduction at the microscale and nanoscale. Nat. Rev. Phys. 3, 555–569 (2021)

    Google Scholar 

  11. Zhmakin, A.I.: Heat conduction beyond the Fourier law. Tech. Phys. 66, 1–22 (2021)

    Google Scholar 

  12. Cattaneo, C.: Sulla conduzione del calore. Atti del Seminario Matematico e Fisico della Universitá di Modena 3, 3–21 (1948)

    MathSciNet  Google Scholar 

  13. Vernotte, M.P.: Les paradoxes de la théorie continue de l’équation de la chaleur. C. R. Acad. Sci. 246, 3154–3155 (1958)

    MathSciNet  Google Scholar 

  14. Porrà, J.M., Masoliver, J., Weiss, G.H.: When the telegrapher’s equation furnishes a better approximation to the transport equation than the diffusion approximation. Phys. Rev. E 55, 7771–7774 (1997)

    Google Scholar 

  15. Körner, C., Bergmann, H.W.: The physical defects of the hyperbolic heat conduction equation. Appl. Phys. A 67, 397–401 (1998)

    Google Scholar 

  16. Shiomi, J., Maruyama, S.: Non-Fourier heat conduction in a single-walled carbon nanotube: classical molecular dynamics simulations. Phys. Rev. B 73, 205420 (2006)

    Google Scholar 

  17. Bright, T.J., Zhang, Z.M.: Common misperceptions of the hyperbolic heat equation. J. Thermophys. Heat Transf. 23, 601–607 (2009)

    Google Scholar 

  18. Zhang, Z.M., Bright, T.J., Peterson, T.J.: Reexamination of the statistical derivations of Fourier’s law and Cattaneo’s equation. Nanoscale Microscale Thermophys. Eng. 15, 220–228 (2011)

    Google Scholar 

  19. Auriault, J.-L.: Cattaneo–Vernotte equation versus Fourier thermoelastic hyperbolic heat equation. Int. J. Eng. Sci. 101, 45–49 (2016)

    MathSciNet  Google Scholar 

  20. Rukolaine, S.A., Chistiakova, O.I.: Probing the \(D_1^{}\) approximation to the linear Boltzmann equation in 3D. Int. J. Heat Mass Transf. 95, 7–14 (2016)

    Google Scholar 

  21. Maillet, D.: A review of the models using the Cattaneo and Vernotte hyperbolic heat equation and their experimental validation. Int. J. Therm. Sci. 139, 424–432 (2019)

    Google Scholar 

  22. Guyer, R.A., Krumhansl, J.A.: Dispersion relation for second sound in solids. Phys. Rev. 133, A1411–A1417 (1964)

    Google Scholar 

  23. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Google Scholar 

  24. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynarmic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)

    Google Scholar 

  25. Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)

    Google Scholar 

  26. Mohammadzadeh, A., Struchtrup, H.: A moment model for phonon transport at room temperature. Contin. Mech. Thermodyn. 29, 117–144 (2017)

    MathSciNet  Google Scholar 

  27. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behavior. Taylor & Francis, Washington (1997)

    Google Scholar 

  28. Tzou, D.Y., Xu, J.: Nonequilibrium transport: the lagging behavior. In: Wang, L. (ed.) Advances in Transport Phenomena: 2010, pp. 93–170. Springer, Berlin (2011)

    Google Scholar 

  29. Jordan, P.M., Dai, W., Mickens, R.E.: A note on the delayed heat equation: instability with respect to initial data. Mech. Res. Commun. 35, 414–420 (2008)

    MathSciNet  Google Scholar 

  30. Dreher, M., Quintanilla, R., Racke, R.: Ill-posed problems in thermomechanics. Appl. Math. Lett. 22, 1374–1379 (2009)

    MathSciNet  Google Scholar 

  31. Ordonez-Miranda, J., Alvarado-Gil, J.J.: On the stability of the exact solutions of the dual-phase lagging model of heat conduction. Nanoscale Res. Lett. 6, 327 (2011)

    Google Scholar 

  32. Rukolaine, S.A.: Unphysical effects of the dual-phase-lag model of heat conduction. Int. J. Heat Mass Transf. 78, 58–63 (2014)

    Google Scholar 

  33. Fabrizio, M., Franchi, F.: Delayed thermal models: stability and thermodynamics. J. Therm. Stresses 37, 160–173 (2014)

    Google Scholar 

  34. Rukolaine, S.A.: Unphysical effects of the dual-phase-lag model of heat conduction: higher-order approximations. Int. J. Therm. Sci. 113, 83–88 (2017)

    Google Scholar 

  35. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)

    Google Scholar 

  36. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Cham (2015)

    Google Scholar 

  37. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, New York (2010)

    Google Scholar 

  38. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, Hoboken (2005)

    Google Scholar 

  39. Pavelka, M., Klika, V., Grmela, M.: Multiscale Thermo-Dynamics: Introduction to GENERIC. De Gruyter, Berlin (2018)

    Google Scholar 

  40. Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (2011)

    Google Scholar 

  41. Ma, Y.: A hybrid phonon gas model for transient ballistic-diffusive heat transport. J. Heat Transf. 135, 044501 (2013)

    Google Scholar 

  42. Ma, Y.: A transient ballistic-diffusive heat conduction model for heat pulse propagation in nonmetallic crystals. Int. J. Heat Mass Transf. 66, 592–602 (2013)

    Google Scholar 

  43. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part I. General concepts. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)

    Google Scholar 

  44. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part II. Applications. J. Non-Equilib. Thermodyn. 19, 250–289 (1994)

    Google Scholar 

  45. Ván, P., Fülöp, T.: Universality in heat conduction theory: weakly nonlocal thermodynamics. Ann. Phys. (Berlin) 524, 470–478 (2012)

    MathSciNet  Google Scholar 

  46. Öttinger, H.C., Struchtrup, H., Torrilhon, M.: Formulation of moment equations for rarefied gases within two frameworks of non-equilibrium thermodynamics: RET and GENERIC. Philos. Trans. R. Soc. A 378, 20190174 (2020)

    MathSciNet  Google Scholar 

  47. Kovács, R., Madjarević, D., Simić, S., Ván, P.: Non-equilibrium theories of rarefied gases: internal variables and extended thermodynamics. Contin. Mech. Thermodyn. 33, 307–325 (2021)

    MathSciNet  Google Scholar 

  48. Szücs, M., Pavelka, M., Kovács, R., Fülöp, T., Ván, P., Grmela, M.: A case study of non-Fourier heat conduction using internal variables and GENERIC. J. Non-Equilib. Thermodyn. 47, 31–60 (2022)

    Google Scholar 

  49. Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)

    Google Scholar 

  50. Kovács, R., Ván, P.: Models of ballistic propagation of heat at low temperatures. Int. J. Thermophys. 37, 95 (2016)

    Google Scholar 

  51. Kovács, R.: Heat conduction beyond Fourier’s law: theoretical predictions and experimental validation. Ph.D. Thesis, Budapest University of Technology and Economics (BME), Budapest (2017)

  52. Kovács, R., Ván, P.: Second sound and ballistic heat conduction: NaF experiments revisited. Int. J. Heat Mass Transf. 117, 682–690 (2018)

    Google Scholar 

  53. Nettleton, R.E., Sobolev, S.L.: Application of extended thermodynamics to chemical, rheological, and transport processes: a special survey. Part III. Wave phenomena. J. Non-Equilib. Thermodyn. 21, 1–16 (1996)

    Google Scholar 

  54. Rukolaine, S.A.: Effects observed in the ballistic-conductive model of heat conduction. St. Petersbg. State Polytech. Univ. J.: Phys. Math. 16(1.2), 315–321 (2023)

    Google Scholar 

  55. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Partial Differential Equations, vol. II. Wiley, Singapore (1962)

    Google Scholar 

  56. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2005)

    Google Scholar 

  57. Kaviany, M.: Heat Transfer Physics. Cambridge University Press, New York (2014)

    Google Scholar 

  58. Rukolaine, S.A., Samsonov, A.M.: Local immobilization of particles in mass transfer described by a Jeffreys-type equation. Phys. Rev. E 88, 062116 (2013)

    Google Scholar 

  59. Szücs, M., Kovács, R., Simic, S.: Open mathematical aspects of continuum thermodynamics: hyperbolicity, boundaries and nonlinearities. Symmetry 12, 1469 (2020)

    Google Scholar 

  60. Modest, M.F.: Radiative Heat Transfer. Academic Press, New York (2013)

    Google Scholar 

  61. Howell, J.R., Mengüç, M.P., Daun, K., Siegel, R.: Thermal Radiation Heat Transfer. CRC Press, Boca Raton (2021)

    Google Scholar 

  62. McClarren, R.G., Holloway, J.P., Brunner, T.A.: On solutions to the \(P_n^{}\) equations for thermal radiative transfer. J. Comput. Phys. 227, 2864–2885 (2008)

    MathSciNet  Google Scholar 

  63. Schäfer, M., Frank, M., Levermore, C.D.: Diffusive corrections to \(P_N^{}\) approximations. Multiscale Model. Simul. 9, 1–28 (2011)

    MathSciNet  Google Scholar 

  64. Zorich, V.A.: Mathematical Analysis, vol. II. Springer, Berlin (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SAR: conceptualization, methodology, software, validation, formal analysis, investigation, writing—original draft, writing—review and editing, visualization.

Corresponding author

Correspondence to S. A. Rukolaine.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

The Fourier transform of the solution to the initial value problem

1.1 General heat source f

The Fourier transform of the equation (4) and the initial conditions (7) results in the equation

$$\begin{aligned}{} & {} \tau _q^{} \tau _Q^{} {\mathcal {F}}T_{ttt}^{} + \left( \tau _q^{} + \tau _Q^{} + \gamma \tau _q^{} \tau _Q^{} \right) {\mathcal {F}}T_{tt}^{} + \left[ 1 + \gamma \left( \tau _q^{} + \tau _Q^{} \right) + \left( \tau _Q^{} + \kappa ^2 \right) \xi ^2 \right] {\mathcal {F}}T_t^{} \nonumber \\{} & {} \quad + \left[ \gamma + \left( 1 + \gamma \kappa ^2 \right) \xi ^2 \right] {\mathcal {F}}T = \tau _q^{} \tau _Q^{} {\mathcal {F}}f_{tt}^{} + \left( \tau _q^{} + \tau _Q^{} \right) {\mathcal {F}}f_t^{} + {\mathcal {F}}f + \kappa ^2 \xi ^2 {\mathcal {F}}f \end{aligned}$$
(20)

and initial conditions

$$\begin{aligned} {\mathcal {F}}T |_{t=0}^{} = 0, \quad {\mathcal {F}}T_t^{} |_{t=0}^{} = {\mathcal {F}}f |_{t=0}^{}, \quad {\mathcal {F}}T_{tt}^{} |_{t=0}^{} = \left( {\mathcal {F}}f_t^{} - \gamma {\mathcal {F}}f \right) |_{t=0}^{}, \end{aligned}$$
(21)

where the Fourier transform is given by \({\mathcal {F}}T(\xi , \cdot ) = \int _{-\infty }^\infty T(x, \cdot ) \mathop {\textrm{e}}\nolimits ^{\textrm{i}\xi x} \mathop {}\!\textrm{d}x\). The Laplace transform of the equation (20) with the initial conditions (21) results in the equation

$$\begin{aligned}{} & {} \big \{ \tau _q^{} \tau _Q^{} s^3 + \left( \tau _q^{} + \tau _Q^{} + \gamma \tau _q^{} \tau _Q^{} \right) s^2 + \left[ 1 + \gamma \left( \tau _q^{} + \tau _Q^{} \right) + \left( \tau _Q^{} + \kappa ^2 \right) \xi ^2 \right] s \\{} & {} \quad + \left[ \gamma + \left( 1 + \gamma \kappa ^2 \right) \xi ^2 \right] \big \} {\mathcal {L}}{\mathcal {F}}T = \left[ \tau _q^{} \tau _Q^{} s^2 + \left( \tau _q^{} + \tau _Q^{} \right) s + 1 + \kappa ^2 \xi ^2 \right] {\mathcal {L}}{\mathcal {F}}f, \end{aligned}$$

where the Laplace transform is given by \({\mathcal {L}}T(\cdot , s) = \int _0^\infty T(\cdot , t) \mathop {\textrm{e}}\nolimits ^{- s t} \mathop {}\!\textrm{d}t\). Hence, the Laplace–Fourier transform of the solution is given by

$$\begin{aligned}{} & {} {\mathcal {L}}{\mathcal {F}}T(\xi ,s) \nonumber \\{} & {} \quad =\frac{ [\tau _q^{} \tau _Q^{} s^2 + (\tau _q^{} + \tau _Q^{}) s + 1 + \kappa ^2 \xi ^2] {\mathcal {L}}{\mathcal {F}}f(\xi ,s) }{ \tau _q^{} \tau _Q^{} s^3 + (\tau _q^{} + \tau _Q^{} + \gamma \tau _q^{} \tau _Q^{}) s^2 + [1 + \gamma (\tau _q^{} + \tau _Q^{}) + (\tau _Q^{} + \kappa ^2) \xi ^2] s + \gamma + \left( 1 + \gamma \kappa ^2 \right) \xi ^2 }. \end{aligned}$$
(22)

1.2 Instantaneous heat source \(f = \varphi (x) \delta (t)\)

If the heat source term is equal to \(f = \varphi (x) \delta (t)\), then its Laplace–Fourier transform is equal to \({\mathcal {L}}{\mathcal {F}}f(\xi ,s) = {\mathcal {F}}\varphi (\xi )\).

If \(\varphi (x) = \delta (x)\), then \({\mathcal {F}}\varphi (\xi ) = 1\). In this case, the solution is the fundamental one, and its Laplace–Fourier transform is given by (see Eq. (22))

$$\begin{aligned} {\mathcal {L}}{\mathcal {F}}\varPhi (\xi ,s)= & {} \frac{ s^2 + a_0^{} s + (\tau _q^{} \tau _Q^{})^{-1} \left( 1 + \kappa ^2 \xi ^2 \right) }{ s^3 + a s^2 + b s + c } \nonumber \\= & {} \frac{u^2 + C u + D}{(u - 2 A) \left[ \left( u + A \right) ^2 + B^2 \right] } = \frac{E}{u - 2 A} + \frac{F (u + A) + G}{\left( u + A \right) ^2 + B^2}, \end{aligned}$$
(23)

where

$$\begin{aligned} a = a_0^{} + \gamma , \quad b(\xi ) = \frac{1}{\tau _q^{} \tau _Q^{}} + \gamma a_0^{} + v^2 \xi ^2, \quad c(\xi ) = \frac{\gamma + (1 + \gamma \kappa ^2) \xi ^2}{\tau _q^{} \tau _Q^{}}, \quad a_0^{} = \frac{1}{\tau _q^{}} + \frac{1}{\tau _Q^{}}, \end{aligned}$$
(24)

v is given by Eq. (3), \(s^3 + a s^2 + b s + c = u^3 + \chi u + \psi \),

$$\begin{aligned}{} & {} s = u - \frac{a}{3}, \end{aligned}$$
(25)
$$\begin{aligned}{} & {} \chi (\xi ) = - \frac{a^2}{3} + b, \qquad \psi (\xi ) = 2 \left( \frac{a}{3} \right) ^3 - \frac{a}{3} b + c, \end{aligned}$$
(26)
$$\begin{aligned}{} & {} A(\xi ) = \frac{\alpha + \beta }{2}, \quad B(\xi ) = \sqrt{3} \,\frac{\alpha - \beta }{2}, \quad C = \frac{a_0^{} - 2\gamma }{3}, \quad D(\xi ) = \frac{-2 a_0^2 - \gamma a_0^{} + \gamma ^2}{9} + \frac{1 + \kappa ^2 \xi ^2}{\tau _q^{} \tau _Q^{}}, \end{aligned}$$
(27)
$$\begin{aligned}{} & {} \alpha (\xi ) = \root 3 \of {-\frac{\psi }{2} + \sqrt{\varDelta }}, \qquad \beta (\xi ) = \root 3 \of {-\frac{\psi }{2} - \sqrt{\varDelta }}, \qquad \varDelta (\xi ) = \left( \frac{\chi }{3} \right) ^3 + \left( \frac{\psi }{2} \right) ^2, \end{aligned}$$
(28)

the roots \(\alpha \) and \(\beta \) are chosen so that the equality \(\alpha \beta = - \chi /3\) is valid and the value A is real, and

$$\begin{aligned} E(\xi )= & {} \frac{4 A^2 + 2 A C + D}{9 A^2 + B^2}, \quad F(\xi ) = 1 - E(\xi ), \nonumber \\ G(\xi )= & {} \frac{-3 A^3 + A B^2 + (3 A^2 + B^2) C - 3 A D}{9 A^2 + B^2}. \end{aligned}$$
(29)

Taking into account Eq. (25), one can conclude that the inverse Laplace transform is equal to

$$\begin{aligned} {\mathcal {L}}^{-1} \left[ \frac{E}{u - 2 A} + \frac{F (u + A) + G}{\left( u + A \right) ^2 + B^2} \right] = \mathop {\textrm{e}}\nolimits ^{-\mu _1^{} t} E + \mathop {\textrm{e}}\nolimits ^{-\mu _2^{} t} \left[ F \cos B t + G \frac{\sin B t}{B} \right] , \end{aligned}$$

where

$$\begin{aligned} \mu _1^{} \equiv \mu _1^{}(\xi ) = - 2A + \frac{a}{3}, \quad \mu _2^{} \equiv \mu _2^{}(\xi ) = A + \frac{a}{3}. \end{aligned}$$
(30)

As a result, we obtain from Eq. (23) that the Fourier transform of the fundamental solution is given by Eq. (9).

In the case of a general distribution \(\varphi \) the Fourier transform of the solution T is given by

$$\begin{aligned} {\mathcal {F}}T(\xi ,t) = {\mathcal {F}}\varPhi (\xi ,t) {\mathcal {F}}\varphi (\xi ). \end{aligned}$$
(31)

Asymptotic behavior of the coefficients as \(\xi \rightarrow \infty \)

It follows from Eqs. (26) and (24) that the coefficients \(\chi \) and \(\psi \) are given by

$$\begin{aligned} \chi (\xi ) = v^2 \xi ^2 + c' \quad \text {and}\quad \psi (\xi ) = C_\psi ^{} \xi ^2 + c'', \end{aligned}$$

where v is given by Eq. (3),

$$\begin{aligned} C_\psi ^{} = \frac{1 + \gamma \kappa ^2}{\tau _q^{} \tau _Q^{}} - \frac{1}{3} \left( \frac{1}{\tau _q^{}} + \frac{1}{\tau _Q^{}} + \gamma \right) v^2, \end{aligned}$$
(32)

the expressions for the coefficients \(c'\) and \(c''\) are not significant. Hence the asymptotic behavior of \(\varDelta \) (see Eq. (28)) is given by

$$\begin{aligned} \varDelta = \left( \frac{v^2}{3} \right) ^3 \xi ^6 \left[ 1 + \left( \frac{v^4 c'}{9} + \frac{C_\psi ^2}{4} \right) \left( \frac{v^2}{3} \right) ^{-3} \frac{1}{\xi ^2} + O\left( \frac{1}{\xi ^4} \right) \right] , \end{aligned}$$

and, therefore,

$$\begin{aligned} \sqrt{\varDelta } = \left( \frac{v^2}{3} \right) ^{3/2} |\xi |^3 \left[ 1 + \frac{1}{2} \left( \frac{v^4 c'}{9} + \frac{C_\psi ^2}{4} \right) \left( \frac{v^2}{3} \right) ^{-3} \frac{1}{\xi ^2} + O\left( \frac{1}{\xi ^4} \right) \right] . \end{aligned}$$

This results in the asymptotic behavior of the radicals \(\alpha \) and \(\beta \) (Eq. (28))

$$\begin{aligned} \alpha (\xi ) = \left( \frac{v^2}{3} \right) ^{1/2} |\xi |\left[ 1 - \left( \frac{v^2}{3} \right) ^{-3/2} \frac{C_\psi ^{}}{6} \frac{1}{|\xi |} + \frac{K}{\xi ^2} + O \left( \frac{1}{|\xi |^3} \right) \right] \end{aligned}$$

and

$$\begin{aligned} \beta (\xi ) = - \left( \frac{v^2}{3} \right) ^{1/2} |\xi |\left[ 1 + \left( \frac{v^2}{3} \right) ^{-3/2} \frac{C_\psi ^{}}{6} \frac{1}{|\xi |} + \frac{K}{\xi ^2} + O \left( \frac{1}{|\xi |^3} \right) \right] , \end{aligned}$$

where the expression for the coefficient K is not significant.

The asymptotic behavior of the coefficients A, B and D (Eq. (27)) follows from the above asymptotics and is given by

$$\begin{aligned} A= & {} - \frac{C_\psi ^{}}{2 v^2} + O \left( \frac{1}{\xi ^2} \right) \equiv \frac{1}{6} \left( \frac{1}{\tau _q^{}} + \frac{1}{\tau _Q^{}} + \gamma \right) - \frac{1 + \gamma \kappa ^2}{2 (\tau _Q^{} + \kappa ^2)} + O \left( \frac{1}{\xi ^2} \right) , \\ B= & {} v |\xi |\left[ 1 + O\left( \frac{1}{\xi ^2} \right) \right] \quad \text {and}\quad D = \frac{\kappa ^2}{\tau _q^{} \tau _Q^{}} \xi ^2 \left[ 1 + O\left( \frac{1}{\xi ^2} \right) \right] . \end{aligned}$$

Therefore, the asymptotic behavior of the coefficients E, F and G (Eq. (29)) is given by

$$\begin{aligned} E = E_\infty ^{} + O \left( \frac{1}{\xi ^2} \right) , \quad F = F_\infty ^{} + O \left( \frac{1}{\xi ^2} \right) \quad \text {and}\quad G = G_\infty ^{} + O \left( \frac{1}{\xi ^2} \right) , \end{aligned}$$
(33)

where

$$\begin{aligned} E_\infty ^{} = \frac{\kappa ^2}{\tau _Q^{} + \kappa ^2}, \quad F_\infty ^{} = 1 - E_\infty ^{}, \end{aligned}$$
(34)

and the expression for the coefficient \(G_\infty ^{}\) is unimportant.

The asymptotic behavior of the coefficients \(\mu _1^{}\) and \(\mu _2^{}\) (Eq. (30)) is given by

$$\begin{aligned} \mu _1^{}(\xi ) = \mu _{1,\infty }^{} + O \left( \frac{1}{\xi ^2} \right) , \qquad \mu _2^{}(\xi ) = \mu _{2,\infty }^{} + O \left( \frac{1}{\xi ^2} \right) . \end{aligned}$$

where

$$\begin{aligned} \mu _{1,\infty }^{} = \frac{1 + \gamma \kappa ^2}{\tau _Q^{} + \kappa ^2}, \qquad \mu _{2,\infty }^{} = \frac{1}{2} \left( \frac{1}{\tau _q^{}} + \frac{1}{\tau _Q^{}} + \gamma - \frac{1 + \gamma \kappa ^2}{\tau _Q^{} + \kappa ^2} \right) . \end{aligned}$$
(35)

As a result, we obtain the asymptotics

$$\begin{aligned} \begin{aligned} \mathop {\textrm{e}}\nolimits ^{-\mu _1^{} t} E&= \mathop {\textrm{e}}\nolimits ^{-\mu _{1,\infty }^{} t} E_\infty ^{} + O \left( \frac{1}{\xi ^2} \right) \quad \text {as}\quad \xi \rightarrow \infty , \\ \mathop {\textrm{e}}\nolimits ^{-\mu _2^{} t} F \cos B t&= \mathop {\textrm{e}}\nolimits ^{-\mu _{2,\infty }^{} t} F_\infty ^{} \cos v \xi t + O \left( \frac{1}{\xi ^2} \right) \quad \text {as}\quad \xi \rightarrow \infty , \\ \mathop {\textrm{e}}\nolimits ^{-\mu _2^{} t} G \frac{\sin B t}{B}&= \mathop {\textrm{e}}\nolimits ^{-\mu _{2,\infty }^{} t} G_\infty ^{} \frac{\sin v \xi t}{v \xi } + O \left( \frac{1}{\xi ^2} \right) \quad \text {as}\quad \xi \rightarrow \infty . \end{aligned} \end{aligned}$$
(36)

The fundamental solution

Taking into account the asymptotics (36), we obtain the asymptotic behavior of the Fourier transform

$$\begin{aligned} {\mathcal {F}}\varPhi = \mathop {\textrm{e}}\nolimits ^{-\mu _{1,\infty }^{} t} E_\infty ^{} + \mathop {\textrm{e}}\nolimits ^{-\mu _{2,\infty }^{} t} \left[ F_\infty ^{} \cos v \xi t + G_\infty ^{} \frac{\sin v \xi t}{v \xi } \right] + O \left( \frac{1}{\xi ^2} \right) \quad \text {as}\quad \xi \rightarrow \infty , \end{aligned}$$

where the coefficients are given by Eqs. (34) and (35). Note, that

$$\begin{aligned}{} & {} {\mathcal {F}}^{-1} 1 = \delta (x), \qquad {\mathcal {F}}^{-1} \left[ \cos \!\left( v \xi t \right) \right] = \frac{1}{2} \left[ \delta \left( x - v t \right) + \delta \left( x + v t \right) \right] ,\\{} & {} {\mathcal {F}}^{-1} \left[ \frac{1}{\xi } \sin \!\left( v \xi t \right) \right] = \frac{1}{2} \textbf{1}_{(-v t, \,v t)}^{}, \end{aligned}$$

where \({\mathcal {F}}^{-1}\) is the inverse Fourier transform, and

$$\begin{aligned} \textbf{1}_S^{}(x) = {\left\{ \begin{array}{ll} 1, &{} x \in S, \\ 0, &{} x \notin S, \end{array}\right. } \end{aligned}$$
(37)

is the indicator function of a set S. Therefore, one can conclude that the fundamental solution can be represented in the form

$$\begin{aligned} \varPhi (x,t) = \varPhi _{\textrm{sing},1}^{}(x,t) + \varPhi _{\textrm{sing},2}^{}(x,t) + \varPhi _\textrm{disc}^{}(x,t) + \varPhi _\textrm{cont}^{}(x,t), \end{aligned}$$

where \(\varPhi _{\textrm{sing},1}^{}\) and \(\varPhi _{\textrm{sing},2}^{}\) are singular parts given by

$$\begin{aligned} \varPhi _{\textrm{sing},1}^{}(x,t) = \mathop {\textrm{e}}\nolimits ^{-\mu _{1,\infty }^{} t} E_\infty ^{} \delta (x) \end{aligned}$$

and

$$\begin{aligned} \varPhi _{\textrm{sing},2}^{}(x,t) = \mathop {\textrm{e}}\nolimits ^{-\mu _{2,\infty }^{} t} F_\infty ^{} \frac{1}{2} \left[ \delta \left( x - v t \right) + \delta \left( x + v t \right) \right] , \end{aligned}$$

\(\varPhi _\textrm{disc}^{}\) is a discontinuous part given by

$$\begin{aligned} \varPhi _\textrm{disc}^{}(x,t) = \mathop {\textrm{e}}\nolimits ^{-\mu _{2,\infty }^{} t} G_\infty ^{} \frac{1}{2 v} \textbf{1}_{(-v t, \,v t)}^{}, \end{aligned}$$

\(\varPhi _\textrm{cont}^{}(x,t)\) is a continuous function, since its Fourier transform has the asymptotic behavior \(O(1/\xi ^2)\) as \(\xi \rightarrow \infty \) [64].

Note, that the system (1) is hyperbolic and the maximum absolute value of the eigenvalues is equal to v. Therefore, perturbations propagate at the speed v. Since the initial disturbance is at the origin, one can conclude that \(\varPhi (x,t) = 0\) for \(|x |> v t\), and hence \(\varPhi _\textrm{cont}^{}(x,t) = 0\) for \(|x |> v t\) as well. Finally, we define the regular part by \(\varPhi _\textrm{reg}^{} = \varPhi _\textrm{disc}^{} + \varPhi _\textrm{cont}^{}\), which is equal to zero for \(|x |> v t\) and continuous for \(|x |< v t\). As a result, the solution \(\varPhi \) takes the form of Eq. (10).

The values of the dimensionless parameters

In this section, we denote dimensional quantities with an asterisk, as in Refs. [41, 42]. The quantities have been taken from Refs. [49,50,51,52].

The speed of sound (in a transverse phonon gas) is \(v^* = 3186 \,\text {m/s}\). The length of a sample is \(L^* = 7.9 \,\text {mm}\). The heat pulse duration is \(\Delta t^* = 0.24\,\mu \text {s}\). The mass density is \(\rho = 2866 \,\text {kg/m}^3\). The thermal diffusivity is given by

$$\begin{aligned} \alpha = \frac{k}{\rho c}, \end{aligned}$$

where k, \(\rho \) and c are the thermal conductivity, mass density and specific heat, respectively. The dimensional propagation speed is given by [51]

$$\begin{aligned} v^* = \sqrt{\frac{1}{\tau _q^*} \left( \alpha + \frac{{\kappa ^*}^2}{\tau _Q^*} \right) }. \end{aligned}$$

Therefore, the dimensional dissipation parameter \(\kappa ^*\) can be calculated from this formula.

Dimensionless values and parameters are given by [49,50,51,52]

$$\begin{aligned} x = \frac{x^*}{L}, \quad t = \frac{\alpha t^*}{L^2}, \quad \tau _{q,Q}^{} = \frac{\alpha \tau _{q,Q}^*}{L^2}, \quad \kappa = \frac{\kappa ^*}{L}, \quad \gamma = \frac{\Delta t^*}{\rho c} \gamma ^*, \quad v = \frac{L v^*}{\alpha }. \end{aligned}$$

Dimensional parameters for the sample at 11 K are \(k = 8573 \,\text {W/(m K)}\), \(c = 1.118 \,\text {J/(kg K)}\), \(\tau _q^* = 0.471\,\mu \text {s}\), \(\tau _Q^* = 0.18\,\mu \text {s}\), \(\gamma ^* = 3.34 \,\text {W/(mm}^3 \text { K)}\). Then \(\alpha = 2.68 \,\text {m}^2\text {/s}\) and, therefore, \(\tau _q^{} = 0.0202\), \(\tau _Q^{} = 0.00772\), \(\kappa = 0.0780\), \(\gamma = 0.250\), see Fig. 1.

Dimensional parameters for the sample at 13 K are \(k = 10{,}200 \,\text {W/(m K)}\), \(c = 1.8 \,\text {J/(kg K)}\), \(\tau _q^* = 0.586\,\mu \text {s}\), \(\tau _Q^* = 0.22\,\mu \text {s}\), \(\gamma ^* = 2.8 \,\text {W/(mm}^3\text { K)}\). Then \(\alpha = 1.98 \,\text {m}^2\text {/s}\) and, therefore, \(\tau _q^{} = 0.0186\), \(\tau _Q^{} = 0.0070\), \(\kappa = 0.118\), \(\gamma = 0.130\), see Fig. 2.

Dimensional parameters for the sample at 14.5 K are \(k = 10{,}950 \,\text {W/(m K)}\), \(c = 2.543 \,\text {J/(kg K)}\), \(\tau _q^* = 0.65\,\mu \text {s}\), \(\tau _Q^* = 0.24\,\mu \text {s}\), \(\gamma ^* = 2.31 \,\text {W/(mm}^3 \text { K)}\). Then \(\alpha = 1.50 \,\text {m}^2\text {/s}\) and, therefore, \(\tau _q^{} = 0.0156\), \(\tau _Q^{} = 0.0058\), \(\kappa = 0.140\), \(\gamma = 0.076\), see Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rukolaine, S.A. Hyperbolicity of the ballistic-conductive model of heat conduction: the reverse side of the coin. Z. Angew. Math. Phys. 75, 50 (2024). https://doi.org/10.1007/s00033-023-02176-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02176-6

Keywords

Mathematics Subject Classification

Navigation