[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Interaction of wave structure in the \(\mathcal{P}\mathcal{T}\)-symmetric \((3\,+\,1)\)-dimensional nonlocal Mel’nikov equation and their applications

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The \((3+1)\)-dimensional [\((3+1)\)-d] Mel’nikov equation describes an interaction between long-wave and short-wave packets in three-spatial dimensions, which is the coupling of \((3+1)\)-d Kadomtsev–Petviashvili [KP] equation and nonlinear Schrödinger [NLS] equation. In this paper, its \(\mathcal{P}\mathcal{T}\)-symmetric version is introduced, and we call it \((3+1)\)-d nonlocal Mel’nikov equation. General soliton solutions, including crossed soliton and parallel soliton, are presented in terms of KP hierarchy reduction method. Furthermore, the semi-rational solutions consisting of lumps and solitons are also constructed. These semi-rational solutions are elastic collision. However, the corresponding semi-rational solution of most nonlocal two-dimensional systems describes the inelastic collision between the lump waves and the solitons under the same conditions. Additionally, a new way to get the rational solution of Mel’nikov equation is given by reducing the semi-rational solution of the \((3+1)\)-d nonlocal Mel’nikov equation. These novel dynamics have never been reported in \((3+1)\)-d nonlocal systems. Moreover, it broadens our research field and inspires us to explore the mysteries of higher-dimensional nonlocal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mel’nikov, V.K.: On equations for wave interactions. Lett. Math. Phys. 7, 129 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Mel’nikov, V.K.: Wave emission and absorption in a nonlinear integrable system. Phys. Lett. A 118, 22–24 (1986)

    MathSciNet  Google Scholar 

  3. Mel’nikov, V.K.: Reflection of waves in nonlinear integrable systems. J. Math. Phys. 28, 2603 (1987)

    MathSciNet  MATH  Google Scholar 

  4. Mel’nikov, V.K.: A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the \(x\), \(y\) plane. Commun. Math. Phys. 112, 639 (1987)

    MATH  Google Scholar 

  5. Senthil Kumar, C., Radha, R., Lakshmanan, M.: Exponentially localized solutions of Mel’nikov equation. Chaos Solitons Fractals 22, 705 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Hase, Y., Hirota, R., Ohta, Y.: Soliton solutions of the Me’lnikov equations. J. Phys. Soc. Jpn. 58, 2713 (1989)

    Google Scholar 

  7. Mu, G., Qin, Z.Y.: Two spatial dimensional N-rogue waves and their dynamics in Mel’nikov equation. Nonlinear Anal. RWA 18, 1–13 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, X.E., Xu, T., Chen, Y.: Hybrid solutions to Mel’nikov equation. Nonlinear Dyn. 94, 2841–2862 (2018)

    Google Scholar 

  9. Deng, Y.J., Jia, R.Y., Lin, J.: Lump and mixed rogue-soliton solutions of the \((2+1)\)-dimensional Mel’nikov system. Complexity 2019, 1420274 (2019)

    MATH  Google Scholar 

  10. Sun, B.N., Wazwaz, A.M.: Interaction of lumps and dark solitons in the Mel’nikov equation. Nonlinear Dyn. 92, 2049–2059 (2018)

    MATH  Google Scholar 

  11. Rao, J.G., Malomed, B.A., Cheng, Y., He, J.S.: Dynamics of interaction between lumps and solitons in the Mel’nikov equation. Commun. Nonlinear Sci. Numer. Simul. 91, 105429 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Liu, W., Zhang, X.X., Li, X.L.: Bright and dark soliton solutions to the partial reverse space-time nonlocal Mel’nikov equation. Nonlinear Dyn. 94, 2177–2189 (2018)

    MATH  Google Scholar 

  13. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5234 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Feng, L., Wong, Z.J., Ma, R.M., Wang, Y., Zhang, X.: Single-mode laser by parity-time symmetry breaking. Science 346, 972 (2014)

    Google Scholar 

  16. Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167 (2012)

    Google Scholar 

  17. Konotop, V.V., Yang, J.K., Zezyulin, D.A.: Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Google Scholar 

  18. Bender, C.M., Brody, D.C., Jones, H.F.: Must a Hamiltonian be Hermitian? Am. J. Phys. 71, 1095 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Makris, K.G., Ganainy, R.E., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    Google Scholar 

  20. Musslimani, Z.H., Makris, K.G., Ganainy, R.E., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Google Scholar 

  21. Bagchi, B., Quesne, C.: sl (2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues. Phys. Lett. A 273, 285 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Ahmed, Z.: Schrödinger transmission through one-dimensional complex potentials. Phys. Rev. A 64, 042716 (2001)

    Google Scholar 

  23. Znojil, M.: PT symmetric square well. Phys. Lett. A 285, 7–10 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Google Scholar 

  25. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Cao, Y.L., Malomed, B.A., He, J.S.: Two \((2+1)\)-dimensional integrable nonlocal nonlinear Schrödinger equations: breather, rational and semi-rational solutions. Chaos Soliton Fractals 114, 99–107 (2018)

    MATH  Google Scholar 

  28. Cao, Y.L., Cheng, Y., Malomed, B.A., He, J.S.: Rogue waves and lumps on the non-zero background in the PT-symmetric nonlocal Maccari system. Stud. Appl. Math. 147, 694–723 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Shi, Y., Zhang, Y.S., Xu, S.W.: Families of nonsingular soliton solutions of a nonlocal Schrödinger–Boussinesq equation. Nonlonear Dyn. 94, 2327–2334 (2018)

    MATH  Google Scholar 

  30. Yan, Z.Y.: Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: a unified two-parameter model. Appl. Math. Lett. 47, 61–68 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Ma, L.Y., Tian, S.F., Zhu, Z.N.: Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation. J. Math. Phys. 58, 103501 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Yong, X.L., Li, X.Y., Huang, Y.H., Ma, W.X., Liu, Y.: Rational solutions and lump solutions to the \((3+1)\)-dimensional Mel’nikov equation. Mod. Phys. Lett. B 34, 2050033 (2020)

    MathSciNet  Google Scholar 

  33. Fang, J.J., Mou, D.S., Zhang, H.C., Wang, Y.Y.: Discrete fractional soliton dynamics of the fractional Ablowitz–Ladik model. Optik 228, 166186 (2021)

    Google Scholar 

  34. Geng, K.L., Mou, D.S., Dai, C.Q.: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07833-5

    Article  Google Scholar 

  35. Bo, W.B., Wang, R.R., Fang, Y., Wang, Y.Y., Dai, C.Q.: Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07884-8

    Article  Google Scholar 

  36. Wu, H.Y., Jiang, L.H.: One-component and two-component Peregrine bump and integrated breather solutions for a partially nonlocal nonlinearity with a parabolic potential. Optik 262, 169250 (2022)

    Google Scholar 

  37. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)

    MathSciNet  MATH  Google Scholar 

  38. Ohta, Y., Wang, D.S., Yang, J.K.: General \(N\)-Dark–Dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127, 345–371 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Feng, B.F.: General \(N\)-soliton solution to a vector nonlinear Schrödinger equation. J. Phys. A Math. Theor. 47, 355203 (2014)

    MATH  Google Scholar 

  40. Ohta, Y., Yang, J.K.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716–1740 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Google Scholar 

  42. Ohta, Y., Yang, J.K.: General rogue waves in the focusing and defocusing Ablowitz–Ladik equations. J. Phys. A 47, 255201 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Rao, J.G., Porsezian, K., He, J.S., Kanna, T.: Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system. Proc. R. Soc. A 474, 20170627 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385–5409 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Rao, J.G., Cheng, Y., Porsezian, K., Mihalache, D., He, J.S.: PT-symmetric nonlocal Davey–Stewartson I equation: soliton solutions with nonzero background. Physica D 401, 132180 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Jingsong He of Shenzhen University for his fruitful suggestions. This work is supported by the NSF of China under Grant No. 12161048. Doctoral Research Foundation of Jiangxi University of Chinese Medicine, China (Grant No. 2021WBZR007) and Jiangxi University of Chinese Medicine Science and Technology Innovation Team Development Program, China (Grant No. CXTD22015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Tian, H., Wazwaz, AM. et al. Interaction of wave structure in the \(\mathcal{P}\mathcal{T}\)-symmetric \((3\,+\,1)\)-dimensional nonlocal Mel’nikov equation and their applications. Z. Angew. Math. Phys. 74, 49 (2023). https://doi.org/10.1007/s00033-023-01945-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01945-7

Keywords

Mathematics Subject Classification

Navigation