[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Long-time behaviors for the Navier–Stokes equations under large initial perturbation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Consider weak solutions u of the 3D Navier–Stokes equations in the critical space

$$\begin{aligned} u\in L^{p}\left( 0,\infty ; {\dot{B}}^{\frac{2}{p}+\frac{3}{q}-1}_{q,\infty }({\mathbb {R}}^3)\right) , \quad 2<p<\infty ,\ 2\le q<\infty \ \mathrm{and} \ \frac{1}{p}+\frac{3}{q}\ge 1. \end{aligned}$$

Firstly, we show that although the initial perturbations \(w_0\) from u are large, every perturbed weak solution v satisfying the strong energy inequality converges asymptotically to u as \(t\rightarrow \infty \). Secondly, by virtue of the characterization of \(w_0\), we examine the optimal upper and lower bounds of the algebraic convergence rates for \(\Vert v(t)-u(t)\Vert _{L^2}\). It should be noted that the above results also hold if \(u\in C([0,\infty ); {\dot{B}}^{\frac{3}{q}-1}_{q,\infty }({\mathbb {R}}^3))\) with sufficiently small norm and \(2\le q\le 3\). The proofs are mainly based on some new estimates for the trilinear form in Besov spaces, the generalized energy inequalities and developed Fourier splitting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P., Dubois, S., Tchamitchian, P.: On the stability of global solutions to Navier–Stokes equations in the space. J. Math. Pures Appl. 83, 673–697 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

  3. Beirão da Veiga, H., Secchi, P.: \(L^{p}\)-stability for the strong solutions of the Navier–Stokes equations in the whole space. Arch. Ration. Mech. Anal. 98, 65–69 (1987)

    Article  Google Scholar 

  4. Bjorland, C., Schonbek, M.E.: Poincaré’s inequality and diffusive evolution equations. Adv. Differ. Equ. 14, 241–260 (2009)

  5. Brandolese, L., Vigneron, F.: New asymptotic profiles of nonstationary solutions of the Navier–Stokes system. J. Math. Pures Appl. 88, 64–86 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Éc. Norm. Supér. 14, 209–246 (1981)

    Article  Google Scholar 

  7. Chen, Q., Miao, C., Zhang, Z.: On the uniqueness of weak solutions for the 3D Navier–Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2165–2180 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chemin, J.-Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in \({\mathbb{R}}^3\). Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 599–624 (2009)

    Article  MathSciNet  Google Scholar 

  9. Dai, M., Qing, J., Schonbek, M.E.: Asymptotic behavior of solutions to liquid crystal systems in \({\mathbb{R}}^3\). Commun. Partial Differ. Equ. 37, 2138–2164 (2012)

    Article  Google Scholar 

  10. Dong, B.-Q., Jia, Y.: Stability behaviors of Leray weak solutions to the three-dimensional Navier–Stokes equations. Nonlinear Anal. Real World Appl. 30, 41–58 (2016)

    Article  MathSciNet  Google Scholar 

  11. Gallagher, I., Planchon, F.: On global infinite energy solutions to the Navier–Stokes equations in two dimensions. Arch. Ration. Mech. Anal. 161, 307–337 (2002)

    Article  MathSciNet  Google Scholar 

  12. Jia, Y., Xie, Q., Wang, W.: The optimal upper and lower bounds of convergence rates for the 3D Navier–Stokes equations under large initial perturbation. J. Math. Anal. Appl. 459, 437–452 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kajikiya, R., Miyakawa, T.: On \(L^2\) decay of weak solutions of Navier–Stokes equations in \({\mathbb{R}}^n\). Math. Zeit. 192, 135–148 (1986)

    Article  Google Scholar 

  14. Karch, G., Pilarczyk, D., Schonbek, M.E.: \(L^2\)-asymptotic stability of singular solutions to the Navier–Stokes system of equations in \(\mathbb{R}^3\). J. Math. Pures Appl. 108, 14–40 (2017)

    Article  MathSciNet  Google Scholar 

  15. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  Google Scholar 

  16. Kozono, H.: Asymptotic stability of large solutions with large perturbation to the Navier–Stokes equations. J. Funct. Anal. 176, 153–197 (2000)

    Article  MathSciNet  Google Scholar 

  17. Kozono, H., Okada, A., Shimizu, S.: Characterization of initial data in the homogeneousBesov space for solutions in the Serrin class of the Navier–Stokes equations. J. Funct. Anal. 278, 108390 (2020)

    Article  MathSciNet  Google Scholar 

  18. Leray, J.: Sur le mouvement d’un liquide visqueux remplissant l’espace. Acta Math. 63, 193–248 (1934)

  19. Miao, C., Yuan, B., Zhang, B.: Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal. 68, 461–484 (2008)

    Article  MathSciNet  Google Scholar 

  20. Miyakawa, T.: On upper and lower bounds of rates of decay for nonstationary Navier–Stokes flows in the whole space. Hiroshima Math. J. 32, 431–462 (2002)

    Article  MathSciNet  Google Scholar 

  21. Niche, C.J., Schonbek, M.E.: Decay characterization of solutions to dissipative equations. J. Lond. Math. Soc. 91, 573–595 (2015)

    Article  MathSciNet  Google Scholar 

  22. Ogawa, T., Rajopadhye, S., Schonbek, M.: Energy decay for a weak solution of the Navier–Stokes equation with slowly varying external forces. J. Funct. Anal. 144(2), 325–358 (1997)

    Article  MathSciNet  Google Scholar 

  23. Ponce, G., Racke, R., Sideris, T.C., Titi, E.S.: Global stability of large solutions to the 3D Navier–Stokes equations. Commun. Math. Phys. 159, 329–341 (1994)

    Article  Google Scholar 

  24. Schonbek, M.E.: \(L^2\) decay for weak solutions of the Navier–Stokes Equations. Arch. Ration. Mech. Anal. 88, 209–222 (1985)

    Article  Google Scholar 

  25. Schonbek, M.E.: Large time behavior of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11, 733–763 (1986)

    Article  Google Scholar 

  26. Schonbek, M.E.: Lower bounds of rates of decay for solution to Navier–Stokes equations. J. Am. Math. Soc. 4, 423–449 (1991)

    Article  MathSciNet  Google Scholar 

  27. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  28. Wiegner, M.: Decay results for weak solutions of the Navier–Stokes equations in \({\mathbb{R}}^n\). J. Lond. Math. Soc. 35, 303–313 (1987)

    Article  Google Scholar 

  29. Zhao, C., Liang, Y., Zhao, M.: Upper and lower bounds of time decay rate of solutions to a class of incompressible third grade fluid equations. Nonlinear Anal. Real World Appl. 15, 229–238 (2014)

    Article  MathSciNet  Google Scholar 

  30. Zhou, Y.: Asymptotic stability to the 3D Navier–Stokes equations. Commun. Partial Differ. Equ. 30, 32–333 (2005)

    Article  MathSciNet  Google Scholar 

  31. Zhou, Y.: Asymptotic stability for the Navier–Stokes equations in the marginal class. Proc. R. Soc. Edinb. Sect. A 136, 1099–1109 (2006)

    Article  MathSciNet  Google Scholar 

  32. Zhou, Y.: A remark on the decay of solutions to the 3-D Navier–Stokes equations. Math. Methods Appl. Sci. 30, 1223–1229 (2007)

    Article  MathSciNet  Google Scholar 

  33. Zhou, Y.: Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows. Nonlinearity 21, 2061–2071 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Bo-Qing Dong for his helpful suggestions. Ye was supported by the NSFC (11701384, 11671155, 11871346) and Natural Science Foundation of SZU (2017057). Jia was supported by the NNSFC Grant No. 11801002 and the NSF of Anhui Province 1808085MA01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Jia, Y. Long-time behaviors for the Navier–Stokes equations under large initial perturbation. Z. Angew. Math. Phys. 72, 136 (2021). https://doi.org/10.1007/s00033-021-01569-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01569-9

Keywords

Mathematics Subject Classification

Navigation