Abstract
An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium under the unsteady Darcy–Brinkman model. Throughout the system, a uniform electric field is applied and maintains with constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.
Similar content being viewed by others
References
Reuss, F.F.: Sur un nouvel effet de l’électricité galvanique. Mem. Soc. Imp. Nat. Moscou 2, 326–337 (1809)
Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge Univ. Press, New York (1989)
Dukhin, A.S., Goetz, P.J.: Ultrasound for Characterizing Colloids: Particle Sizing. Zeta Potential Rheology. Elsevier, Amsterdam (2002)
Smoluchowski, M.: Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs. Bull. Int. Acad. Sci. Cracovie 8, 182–200 (1903)
Burgreen, D., Nakache, F.R.: Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091 (1964)
Berli, C.L.A., Olivares, M.L.: Electrokinetic flow of non-Newtonian fluids in microchannels. J. Colloid Interface Sci. 320, 582–589 (2008)
Chang, C.C., Wang, C.Y.: Electro-osmotic flow in a sector microchannel. Phys. Fluids 21, 042002 (2009)
Zhao, C., Yang, C.: Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid. Nanofluid. 13, 179–203 (2012)
Morrison, F.A.: Transient electrophoresis of an arbitrarily oriented cylinder. J. Colloid Interface Sci. 36, 139–145 (1971)
Ivory, C.F.: Transient electroosmosis: the momentum transfer coefficient. J. Colloid Interface Sci. 96, 296–298 (1983)
Keh, H.J., Tseng, H.C.: Transient electrokinetic flow in fine capillaries. J. Colloid Interface Sci. 242, 450–459 (2001)
Jian, Y., Yang, L., Liu, Q.: Time periodic electro-osmotic flows through a microannulus. Phys. Fluids 22, 042001 (2010)
Morrison, F.A.: Transient electrophoresis of a dielectric sphere. J. Colloid Interface Sci. 29, 687–691 (1969)
Keh, H.J., Huang, Y.C.: Transient electrophoresis of dielectric spheres. J. Colloid Interface Sci. 291, 282–291 (2005)
Chen, G.Y., Keh, H.J.: Start-up of electrokinetic flow in a fibrous porous medium. J. Phys. Chem. C 118, 2826–2833 (2014)
Chiang, C.C., Keh, H.J.: Transient electroosmosis in the transverse direction of a fibrous porous medium. Colloids Surf. A 481, 577–582 (2015)
Chiang, C.C., Keh, H.J.: Startup of electrophoresis in a suspension of colloidal spheres. Electrophoresis 36, 3002–3008 (2015)
Jones, E.H., Reynolds, D.A., Wood, A.L., Thomas, D.G.: Use of electrophoresis for transporting nano-iron in porous media. Ground Water 49, 172–183 (2010)
Pomès, V., Fernández, A., Houi, D.: Characteristic time determination for transport phenomena during the electrokinetic treatment of a porous medium. Chem. Eng. J. 87, 251–260 (2002)
Oyanader, M.A., Arce, P., Dzurik, A.: Design criteria for soil cleaning operations in electrokinetic remediation: hydrodynamic aspects in a cylindrical geometry. Electrophoresis 26, 2878–2887 (2005)
Riviere, J.E., Heit, M.C.: Electrically-assisted transdermal delivery. Pharm. Res. 14, 687–697 (1997)
Pyell, U.: Characterization of nanoparticles by capillary electromigration separation techniques. Electrophoresis 31, 814–831 (2010)
Calladine, C.R., Collis, C.M., Drew, H.R., Mott, M.R.: A study of electrophoretic mobility of DNA in agarose and polyacrylamide gels. J. Mol. Biol. 221, 981–1005 (1991)
Shi, Q., Jackowski, G.: One-dimensional polyacrylamide gel electrophoresis. In: Hames, B.D. (ed.) Gel Electrophoresis of Proteins: A Practical Approach, pp. 1–52. Oxford University Press, Oxford (1998)
Magdeldin, S.: Gel Electrophoresis Principles and Basics. InTech, Rijeka (2012)
Paillat, T., Moreau, E., Grimaud, P.O., Touchard, G.: Electrokinetic phenomena in porous media applied to soil decontamination. IEEE Trans. Dielectr. Electr. Insul. 7, 693–704 (2000)
Wu, Y.F., Chou, W.L., Yen, S.C.: Removal of mercury and methylmercury from contaminated soils by applying an electric field. J. Environ. Sci. Health A 35, 1153–1170 (2000)
Feng, J., Ganatos, P., Weinbaum, S.: Motion of a sphere near planar confining boundaries in a Brinkman medium. J. Fluid Mech. 375, 265–296 (1998)
Tsai, P., Huang, C.H., Lee, E.: Electrophoresis of a charged colloidal particle in porous media: boundary effect of a solid plane. Langmuir 27, 13481–13488 (2011)
Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media II. Elsevier, Oxford (2002)
Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)
Nabovati, A., Llewellin, E.W., Sousa, A.C.M.: A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Compos. A 40, 860–869 (2009)
Vafai, K.: Handbook of Porous Media, 3rd edn. CRC Press, New York (2015)
Neale, G., Epstein, M., Nader, W.: Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865–1874 (1973)
Durlofsky, L., Brady, J.F.: Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30, 3329–3341 (1987)
Sherief, H.H., Faltas, M.S., Saad, E.I.: Stokes resistance of a porous spherical particle in a spherical cavity. Acta Mech. 227, 1075–1093 (2016)
El-Sapa, S., Saad, E.I., Faltas, M.S.: Axisymmetric motion of two spherical particles in a Brinkman medium with slip surfaces, fluid. Eur. J. Mech. B Fluids 67, 306–313 (2018)
He, Y.Y., Lee, E.: Electrophoresis in concentrated dispersions of charged porous spheres. Chem. Eng. Sci. 63, 5719–5727 (2008)
Keh, H.J., Anderson, J.L.: Boundary effects on electrophoretic motion of colloidal spheres. J. Fluid Mech. 153, 417–439 (1985)
Tsay, R., Weinbaum, S.: Viscous flow in a channel with periodic cross-bridging fibres: exact solutions and Brinkman approximation. J. Fluid Mech. 226, 125–148 (1991)
Uematsu, Y.: Electrophoresis of electrically neutral porous spheres induced by selective affinity of ions. Phys. Rev. E 91, 022303 (2015)
Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Martinus Nijoff, The Hague (1983)
Maribo-Mogensen, B., Kontogeorgis, G.M., Thomsen, K.: Comparison of the Debye-Hückel and the mean spherical approximation theories for electrolyte solutions. Ind. Eng. Chem. Res. 51, 5353–5363 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saad, E.I., Faltas, M.S. Time-dependent electrophoresis of a dielectric spherical particle embedded in Brinkman medium. Z. Angew. Math. Phys. 69, 43 (2018). https://doi.org/10.1007/s00033-018-0939-4
Received:
Revised:
Published:
DOI: https://doi.org/10.1007/s00033-018-0939-4