[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improved Stability and \(H_{\infty }\) Performance Criteria for Teleoperation Delay-Dependent Systems: SSG and Input–output Approaches

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, a stability analysis and \( H_{\infty } \) performance are derived for the bilateral teleoperation systems with time-varying delay. A new model transformation is firstly applied by employing a three-term approximation for the delayed state with the scaled small-gain theorem (SSG). By using appropriate Lyapunov–Krasovskii functional (LKF) and a generalized free-matrix-based integral inequality, new stability analysis and \( H_{\infty } \) performance criteria are proposed in terms of linear matrix inequalities. Finally, the engineering relevance of theory has been highlighted with different examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. R.J. Anderson, M.W. Spong, Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34, 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  2. A. Alfi, A. Bakhshi, M. Yousefi, H.A. Talebi, Design and implementation of robust-fixed structure controller for telerobotic systems. J. Intell. Robot. Syst. (JIRS) 83, 253–269 (2016)

    Article  Google Scholar 

  3. K. Badie, M. Alfidi, F. Tadeo, Z. Chalh, Delay-dependent stability and \(H_{\infty }\) performance of 2-D continuous systems with delays. Circuits Syst. Signal Process. 37(12), 5333–5350 (2018)

    Article  MathSciNet  Google Scholar 

  4. K. Badie, M. Alfidi, F. Tadeo, Z. Chalh, Robust \(H_{\infty }\) controller design for uncertain 2D continuous systems with interval time-varying delays. Int. J. Syst. Sci. 51(3), 440–460 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Barreiro, E. Delgado, Stability of Teleoperation Systems by Delay-dependent Neutral LMI Techniques, in: Proceedings of IEEE Industrial Electronics IECON, 32nd Annual Conference (2006)

  6. E. Delgado, C.M. Diaz, A. Barreiro, Stability of Teleoperation Systems for Time-Varying Delays by Neutral LMI Techniques. Hindawi Publishing Corporation, Mathematical Problems in Engineering, pp. 17 (2012)

  7. E. Delgado, P. Falcn, M. Daz-Cacho, A. Barreiro, Four-Channel Teleoperation with Time-Varying Delays and Disturbance Observers. Mathematical Problems in Engineering, pp. 11 (2015)

  8. H. Du, \(H_{{\infty }}\) state-feedback control of bilateral teleoperation systems with asymmetric time-varying delays. IET Control Theory Appl. 7, 594–605 (2013)

    Article  MathSciNet  Google Scholar 

  9. H. El Aiss, A. Hmamed, A. El Hajjaji, Improved stability and \(H_{\infty }\) performance criteria for linear systems with interval time-varying delays via three terms approximation. Int. J. Syst. Sci. 48(16), 3450–3458 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. El Aiss, H. Zoulagh, T. El Hajjaji, A. Hmamed, Full and reduced-order \(H_{\infty }\) filtering of Takagi–Sugeno fuzzy time-varying delay systems: input–output approach. Int. J. Adapt. Control Signal Process. 35(5), 748–768 (2021)

    Article  MathSciNet  Google Scholar 

  11. F. El Haoussi, E.H. Tissir, H. Satori, F.R. Tadeo, Robust stability analysis of teleoperation by delay-dependent neutral LMI techniques. Appl. Math. Sci. 8, 2687–2700 (2014)

    Google Scholar 

  12. C. El-Kasri, A. Hmamed, E.H. Tissir, F. Tadeo, Robust \({H_{\infty }}\) filtering for uncertain two-dimensional continuous systems with time-varying delays. Multidimens. Syst. Signal Process. 24(4), 685–706 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. El-Kasri, A. Hmamed, E.H. Tissir, F. Tadeo, Reduced-order \(H_{\infty }\) filters for uncertain 2-D continuous systems, via LMIs and polynomial matrices. Circuits Syst. Signal Process. 33(4), 1189–1214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Finsler, Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen. Commentarii Mathematici Helvetici, (9), pp. 188–192 (1937)

  15. A. Hader, C. El Kasri, E.H. Tissir, F. El Haoussi, Delay dependent stability analysis of teleoperation systems via input output approach. In: Proceedings of 2019 International Conference on Intelligent Systems and Advanced Computing Sciences, ISACS 2019 (2019)

  16. J.K. Hale, S.M. Lunel, Introduction to functional differential equations. Applied Mathematical Sciences, (99) (1993)

  17. Y. He, C. Lin, Q.G. Wang, M. Wu, Delay-range-dependent stability for systems with time-varying delay. Automatica 43, 371–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Hmamed, H. EL Aiss, A. EL Hajjaji, Stability analysis of linear systems with time varying delay: an input output approach. In: IEEE 54th Annual Conference on Decision and Control (CDC). IEEE, pp. 1756–1761 (2015)

  19. P.F. Hokayem, M.W. Spong, Bilateral teleoperation: an historical survey. Automatica 12, 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Kawai, M. Fujita, A study of bilateral teleoperation with time delay using command governor. In: SICE Annual Conference, pp. 2990–2994 (2007)

  21. A. Khosravi, A. Alfi, A. Roshandel, Delay-dependent stability for transparent bilateral teleoperation system: an LMI approach. J. AI Data Min. 1, 75–87 (2013)

    Google Scholar 

  22. S.J. Lee, S.C. Lee, H.S. Ahn, Design and control of telematched surgery robot. Mechatronics 24, 395–406 (2014)

    Article  Google Scholar 

  23. L. Li, X. Liu, New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays. Inf. Sci. 179(8), 1134–1148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Z. Lin, G.H. Jun, R.K. Hamid, Robust stability and stabilization of uncertain T-S Fuzzy systems with time-varying delay: an input–output approach. IEEE Trans. Fuzzy Syst. 21, 883–897 (2013)

    Article  Google Scholar 

  25. K. Naamane, E.H. Tissir, Improved delay dependent stability of nonlinear quadratic T–S fuzzy systems. J. Circuits Syst. Comput. (29) (2019)

  26. G. Niemeyer, J.J.E. Slotine, Stable adaptive teleoperation. IEEE J. Oceanic Eng. 16, 152–162 (1991)

    Article  Google Scholar 

  27. A. Roushandel, A. Alfi, A. Khosravi, Optimal control of a teleoperation system via LMI-based robust PID controllers. Int. J. Recent Trends Eng. Technol. 9, 50–59 (2013)

    Google Scholar 

  28. H. Shao, New delay-dependent stability criteria for systems with interval delay. Automatica 45, 744–749 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Wang, Z. Sun, W. Chou, Robust controller design for teleoperation systems with time-varying delays. In: International Conference on Measuring Technology and Mechatronics Automation 3, pp. 266–269 (2010)

  30. D. Yang, H. Chen, G. Xing, Z. Liu , X. S. He, Networked \(H_{\infty }\) synchronization of bilateral teleoperation systems, in: 11th World Congress on Intelligent Control and Automation, pp. 3771–3774 (2014)

  31. H.B. Zeng, X.G. Liu, W. Wang, A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Appl. Math. Comput. 354, 1–8 (2019)

    MathSciNet  MATH  Google Scholar 

  32. B. Zhang, A. Kruszewski, J.P. Richard, A novel control design for delayed teleoperation based on delay-scheduled Lyapunov–Krasovskii functionals. Int. J. Control 8(87), 1694–1706 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Zhang, C.R. Knopse, P. Tsiotras, Stability of time-delay systems: equivalence between Lyapunov and scaled small gain conditions. IEEE Trans. Autom. Control 46, 482–486 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y.L. Zhou, L. Chong, C. Bing, Admissibility analysis for linear singular systems with time-varying delays via neutral system approach. ISA Trans. 61, 141–146 (2016)

    Article  Google Scholar 

  35. X.L. Zhu, Y.Y. Wang, Y. Gan, \(H_{\infty }\) filtering for continuous-time singular systems with time-varying delay. Int. J. Adapt. Control Signal Process. 25(2), 137–54 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Hader.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hader, A., El-Kasri, C., Tissir, E. et al. Improved Stability and \(H_{\infty }\) Performance Criteria for Teleoperation Delay-Dependent Systems: SSG and Input–output Approaches. Circuits Syst Signal Process 42, 5187–5206 (2023). https://doi.org/10.1007/s00034-023-02362-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02362-x

Keywords