[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Exponential Stability Using Sliding Mode Control for Stochastic Neutral-Type Systems

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This study deals with the exponential stability of stochastic neutral-type systems (SNTSs) with Markovian switching and Lévy noises. A new integral sliding mode surface for SNTSs is constructed to design a sliding mode controller. Furthermore, a new Lyapunov function is assigned to obtain the exponential stability criterion of SNTSs. On this basis, a new sliding mode control law is proposed to ensure the accessibility of SNTSs. In addition, the parameters of the sliding mode controller for SNTSs are obtained. Finally, an example to illustrate the theoretical results has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. H. Chen, P. Shi, C.C. Lim, Exponential synchronization for Markovian stochastic coupled neural networks of neutral-type via adaptive feedback control. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1618–1632 (2017)

    Article  MathSciNet  Google Scholar 

  2. L. Chen, M. Liu, X. Huang, S. Fu, J. Qiu, Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures. IEEE Trans. Fuzzy Syst. 26(3), 1311–1323 (2018)

    Article  Google Scholar 

  3. Q. Chen, D. Tong, W. Zhou, Y. Xu, Adaptive exponential state estimation for Markovian jumping neural networks with multi-delays and Lévy noises. Circuits Syst. Signal Process. 38(7), 3321–3339 (2019)

    Article  Google Scholar 

  4. K. Do, Inverse optimal control of stochastic systems driven by Lévy processes. Automatica 107, 539–550 (2019)

    Article  MathSciNet  Google Scholar 

  5. Y. Gai, M. Kimiabeigi, Y.C. Chong, J.D. Widmer, J. Goss, U. SanAndres, A. Steven, D.A. Staton, On the measurement and modeling of the heat transfer coefficient of a hollow-shaft rotary cooling system for a traction motor. IEEE Trans. Ind. Appl. 54(6), 5978–5987 (2018)

    Article  Google Scholar 

  6. Q. Gao, G. Feng, Z. Xi, Y. Wang, J. Qiu, A new design of robust \({H}_{\infty }\) sliding mode control for uncertain stochastic T-S fuzzy time-delay systems. IEEE Trans. Cybern. 44(9), 1556–1566 (2014)

    Article  Google Scholar 

  7. Q. Jia, L. Guo, Z. Jin, Y. Fang, Preserving model privacy for machine learning in distributed systems. IEEE Trans. Parallel Distrib. Syst. 29(8), 1808–1822 (2018)

    Article  Google Scholar 

  8. J. Jiao, K. Venkat, T. Weissman, Relations between information and estimation in discrete-time Lévy channels. IEEE Trans. Inf. Theory 63(6), 3579–3594 (2017)

    Article  Google Scholar 

  9. Y. Kao, C. Wang, J. Xie, H.R. Karimi, W. Li, \(H_\infty \) sliding mode control for uncertain neutral-type stochastic systems with Markovian jumping parameters. Inf. Sci. 314, 200–211 (2015)

    Article  MathSciNet  Google Scholar 

  10. Y. Kao, J. Xie, C. Wang, H.R. Karimi, A sliding mode approach to \(H_\infty \) non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems. Automatica 52, 218–226 (2015)

    Article  MathSciNet  Google Scholar 

  11. B. Lee, J.G. Lee, Robust stability and stabilization of linear delayed systems with structured uncertainty. Automatica 35(6), 1149–1154 (1999)

    Article  MathSciNet  Google Scholar 

  12. H. Li, P. Shi, D. Yao, L. Wu, Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64, 133–142 (2016)

    Article  MathSciNet  Google Scholar 

  13. Z.Y. Li, J. Lam, Y. Wang, Stability analysis of linear stochastic neutral-type time-delay systems with two delays. Automatica 91, 179–189 (2018)

    Article  MathSciNet  Google Scholar 

  14. M. Luo, S. Zhong, J. Cheng, Simultaneous finite-time control and fault detection for singular Markovian jump delay systems with average dwell time constraint. Circuits Syst. Signal Process. 37(12), 5279–5310 (2018)

    Article  MathSciNet  Google Scholar 

  15. P. Shi, F. Li, L. Wu, C.C. Lim, Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2101–2114 (2017)

    MathSciNet  Google Scholar 

  16. J. Song, Y. Niu, Y. Zou, Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly accessible mode detection probabilities. Automatica 93, 33–41 (2018)

    Article  MathSciNet  Google Scholar 

  17. Y. Sun, Y. Zhang, W. Zhou, J. Zhou, X. Zhang, Adaptive exponential stabilization of neutral-type neural network with Lévy noise and Markovian switching parameters. Neurocomputing 284, 160–170 (2018)

    Article  Google Scholar 

  18. D. Tong, Q. Chen, W. Zhou, J. Zhou, Y. Xu, Multi-delay-dependent exponential synchronization for neutral-type stochastic complex networks with Markovian jump parameters via adaptive control. Neural Process. Lett. 49(3), 1611–1628 (2019)

    Article  Google Scholar 

  19. D. Tong, C. Xu, Q. Chen, W. Zhou, Y. Xu, Sliding mode control for nonlinear stochastic systems with Markovian jumping parameters and mode-dependent time-varying delays. Nonlinear Dyn. 100(2), 1343–1358 (2020)

    Article  Google Scholar 

  20. D. Tong, W. Zhou, X. Zhou, J. Yang, L. Zhang, Y. Xu, Exponential synchronization for stochastic neural networks with multi-delayed and Markovian switching via adaptive feedback control. Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 359–371 (2015)

    Article  MathSciNet  Google Scholar 

  21. Y. Wang, D. Tong, Q. Chen, W. Zhou, Exponential synchronization of chaotic systems with stochastic perturbations via quantized feedback control. Circuits Syst. Signal Process. 39(1), 474–491 (2020)

    Article  Google Scholar 

  22. T. Wu, L. Xiong, J. Cao, Z. Liu, H. Zhang, New stability and stabilization conditions for stochastic neural networks of neutral type with Markovian jumping parameters. J. Franklin Inst. 355(17), 8462–8483 (2018)

    Article  MathSciNet  Google Scholar 

  23. C. Xu, D. Tong, Q. Chen, W. Zhou, P. Shi, Exponential stability of Markovian jumping systems via adaptive sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2018.2884565

    Article  Google Scholar 

  24. Y. Xu, W. Zhou, J. Zhang, W. Sun, D. Tong, Topology identification of complex delayed dynamical networks with multiple response systems. Nonlinear Dyn. 88(4), 2969–2981 (2017)

    Article  MathSciNet  Google Scholar 

  25. X. Yan, D. Tong, Q. Chen, W. Zhou, Y. Xu, Adaptive state estimation of stochastic delayed neural networks with fractional Brownian motion. Neural Process. Lett. 50(2), 2007–2020 (2019)

    Article  Google Scholar 

  26. C. Yang, Z. Che, L. Zhou, Integral sliding mode control for singularly perturbed systems with mismatched disturbances. Circuits Syst. Signal Process. 38(4), 1561–1582 (2019)

    Article  MathSciNet  Google Scholar 

  27. J. Yang, W. Zhou, P. Shi, X. Yang, X. Zhou, H. Su, Adaptive synchronization of delayed Markovian switching neural networks with Lévy noise. Neurocomputing 156, 231–238 (2015)

    Article  Google Scholar 

  28. J. Zhai, Dynamic output-feedback control for nonlinear time-delay systems and applications to chemical reactor systems. IEEE Trans. Circuits Syst. Express Briefs 66(11), 1845–1849 (2019)

    Article  Google Scholar 

  29. C. Zhang, W. Li, K. Wang, Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks. IEEE Trans. Neural Netw. Learn. Syst. 26(8), 1698–1709 (2015)

    Article  MathSciNet  Google Scholar 

  30. H. Zhang, Z. Qiu, J. Cao, M. Abdel-Aty, L. Xiong, Event-triggered synchronization for neutral-type semi-Markovian neural networks with partial mode-dependent time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/10.1109/TNNLS.2019.2955287

    Article  Google Scholar 

  31. Z. Zhang, Y. Shi, Z. Zhang, W. Yan, New results on sliding-mode control for Takagi–Sugeno fuzzy multiagent systems. IEEE Trans. Cybern. 49(5), 1592–1604 (2019)

    Article  Google Scholar 

  32. H. Zhou, Y. Zhang, W. Li, Synchronization of stochastic Lévy noise systems on a multi-weights network and its applications of chua’s circuits. IEEE Trans. Circuits Syst. Regul. Pap. 66(7), 2709–2722 (2019)

    Article  MathSciNet  Google Scholar 

  33. J. Zhou, T. Cai, W. Zhou, D. Tong, Master-slave synchronization for coupled neural networks with Markovian switching topologies and stochastic perturbation. Int. J. Robust Nonlinear Control 28(6), 2249–2263 (2018)

    Article  MathSciNet  Google Scholar 

  34. J. Zhou, X. Ding, L. Zhou, W. Zhou, J. Yang, D. Tong, Almost sure adaptive asymptotically synchronization for neutral-type multi-slave neural networks with Markovian jumping parameters and stochastic perturbation. Neurocomputing 214, 44–52 (2016)

    Article  Google Scholar 

  35. L. Zhou, Q. Zhu, Z. Wang, W. Zhou, H. Su, Adaptive exponential synchronization of multislave time-delayed recurrent neural networks with Lévy noise and regime switching. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2885–2898 (2017)

    Article  MathSciNet  Google Scholar 

  36. W. Zhou, Q. Zhu, P. Shi, H. Su, L. Zhou, Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters. IEEE Trans. Cybern. 44(12), 2848–2860 (2014)

    Article  Google Scholar 

  37. X. Zhou, J. Yang, Z. Li, D. Tong, \(p\)th moment synchronization of Markov switched neural networks driven by fractional Brownian noise. Neural Comput. Appl. 29(10), 823–836 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (61673257), the Natural Science Foundation of Shanghai (20ZR1422400) and the China Postdoctoral Science Foundation (2019M661322).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongbing Tong or Wuneng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Tong, D., Zhou, W. et al. Exponential Stability Using Sliding Mode Control for Stochastic Neutral-Type Systems. Circuits Syst Signal Process 40, 2006–2024 (2021). https://doi.org/10.1007/s00034-020-01566-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01566-9

Keywords

Navigation