[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Neural Adaptive Dynamic Surface Asymptotic Tracking Control for a Class of Uncertain Nonlinear System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, by incorporating the neural network into an adaptive dynamic surface control (DSC) framework, a neural adaptive DSC algorithm is developed for a class of uncertain nonlinear system to ensure the asymptotic output tracking. Neural network is used to approximate the unknown nonlinear term in the system such that the requirements for known nonlinear term in control laws design procedure are released. In order to eliminate the boundary layer effects, which are caused by the linear filters at each step in the DSC procedure, the nonlinear filters with the compensation term are designed skillfully. The proposed neural adaptive DSC algorithm not only avoids the inherent problem of “explosion of complexity” in the backstepping procedure, but also has its own advantages: (1) releasing the requirements for known nonlinear term in control laws design procedure; (2) holding the asymptotic output tracking performance. Some simulations are shown to demonstrate the effectiveness and advantages of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. H. Dong, S. Gao, B. Ning, T. Tang, Y. Li, K.P. Valavanis, Error-driven nonlinear feedback design for fuzzy adaptive dynamic surface control of nonlinear systems with prescribed tracking performance. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–11 (2017)

    Google Scholar 

  2. P. Du, H. Liang, S. Zhao, C.K. Ahn, Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–12 (2019)

    Google Scholar 

  3. S. Gao, H. Dong, B. Ning, Neural adaptive dynamic surface control for uncertain strict-feedback nonlinear systems with nonlinear output and virtual feedback errors. Nonlinear Dyn. 90(4), 1–17 (2017)

    MathSciNet  MATH  Google Scholar 

  4. S. Gao, H. Dong, B. Ning, Observed-based nonlinear feedback decentralized neural adaptive dynamic surface control for large-scale nonlinear systems. Int. J. Adapt. Control Signal Process. 31(11), 1–18 (2017)

    Article  Google Scholar 

  5. S. Gao, B. Ning, H. Dong, Adaptive neural control with intercepted adaptation for time-delay saturated nonlinear systems. Neural Comput. Appl. 26(8), 1849–1857 (2015)

    Article  Google Scholar 

  6. M. Krstic, P.V. Kokotovic, I. Kanellakopoulos, Nonlinear and adaptive control design (Springer, Berlin Heidelberg, 2003)

    MATH  Google Scholar 

  7. J. Lei, H.K. Khalil, Feedback linearization for nonlinear systems with time-varying input and output delays by using high-gain predictors. IEEE Trans. Autom. Control 61(8), 2262–2268 (2016)

    Article  MathSciNet  Google Scholar 

  8. H. Li, L. Dou, Z. Su, Adaptive dynamic surface based nonsingular fast terminal sliding mode control for semistrict feedback system. J. Dyn. Syst. Meas. Control 134(2), 21011–21020 (2012)

    Article  Google Scholar 

  9. J. Li, W. Chen, J.M. Li, Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems. Int. J. Robust Nonlinear Control 21(4), 452–472 (2011)

    Article  MathSciNet  Google Scholar 

  10. Y. Li, S. Tong, Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays. Inf. Sci. 292(C), 125–142 (2015)

    Article  MathSciNet  Google Scholar 

  11. Y. Li, S. Tong, Adaptive fuzzy output-feedback control for switched nonlinear systems with arbitrary switchings. Circuits Syst. Signal Process. 35(9), 3152–3171 (2016)

    Article  MathSciNet  Google Scholar 

  12. W. Liu, F. Xie, Backstepping-based adaptive control for nonlinear systems with actuator failures and uncertain parameters. Circuits Syst. Signal Process. 39(1), 138–153 (2020)

    Article  Google Scholar 

  13. Y.H. Liu, Adaptive dynamic surface asymptotic tracking for a class of uncertain nonlinear systems. Int. J. Robust Nonlinear Control 28(4), 1233–1245 (2018)

    Article  MathSciNet  Google Scholar 

  14. Y.H. Liu, X. Hu, L. Huang, Adaptive asymptotic tracking of uncertain nonlinear systems with unknown hysteresis nonlinearity. In: 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation, pp. 46–51 (2017)

  15. Y.J. Liu, W. Wang, Adaptive output feedback control of uncertain nonlinear systems based on dynamic surface control technique. Int. J. Robust Nonlinear Control 22(9), 945–958 (2012)

    Article  MathSciNet  Google Scholar 

  16. P. Patrickyip, J. Karlhedrick, Adaptive dynamic surface control: A simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control 71(5), 959–979 (1998)

    Article  MathSciNet  Google Scholar 

  17. M. Qian, B. Jiang, D. Xu, Fault tolerant tracking control scheme for UAV using dynamic surface control technique. Circuits Syst. Signal Process. 31(5), 1713–1729 (2012)

    Article  MathSciNet  Google Scholar 

  18. K. Rabah, S. Ladaci, A fractional adaptive sliding mode control configuration for synchronizing disturbed fractional-order chaotic systems. Circuits Syst. Signal Process. 39(3), 1244–1264 (2020)

    Article  Google Scholar 

  19. D.E. Ríos Héctor, W. Perruquetti, An adaptive sliding-mode observer for a class of uncertain nonlinear systems. Int. J. Adapt. Control Signal Process. 32(5), 511–527 (2018)

    Article  MathSciNet  Google Scholar 

  20. Q. Shen, B. Jiang, V. Cocquempot, Adaptive fault-tolerant backstepping control against actuator gain faults and its applications to an aircraft longitudinal motion dynamics. Int. J. Robust Nonlinear Control 23(15), 1753–1779 (2013)

    Article  MathSciNet  Google Scholar 

  21. Q. Shen, B. Jiang, V. Cocquempot, Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans. Fuzzy Syst. 22(2), 338–349 (2014)

    Article  Google Scholar 

  22. B. Song, J.K. Hedrick, Observer-based dynamic surface control for a class of nonlinear systems: an LMI approach. IEEE Trans. Autom. Control 49(11), 1995–2001 (2004)

    Article  MathSciNet  Google Scholar 

  23. B. Song, J.K. Hedrick, Dynamic Surface Control of Uncertain Nonlinear Systems (Springer, London, 2011)

    Book  Google Scholar 

  24. H. Sun, L. Hou, G. Zong, Adaptive neural network asymptotical tracking control for an uncertain nonlinear systems with input quantisation. Int. J. Syst. Sci. 49(9), 1974–1984 (2018)

    Article  MathSciNet  Google Scholar 

  25. D. Swaroop, J.K. Hedrick, P.P. Yip, J.C. Gerdes, Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MathSciNet  Google Scholar 

  26. D. Swaroop, J.K. Hedrick, P.P. Yip, J.C. Gerdes, Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2002)

    Article  MathSciNet  Google Scholar 

  27. K.K. Tan, S.N. Huang, T.H. Lee, Adaptive backstepping control for a class of nonlinear systems using neural network approximations. Int. J. Robust Nonlinear Control 14(7), 643–664 (2004)

    Article  MathSciNet  Google Scholar 

  28. S. Tong, Y. Li, Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)

    Article  Google Scholar 

  29. S. Tong, L. Zhang, Y. Li, Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 37–47 (2017)

    Article  Google Scholar 

  30. D. Wang, J. Huang, Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  Google Scholar 

  31. C. Wen, J. Zhou, Decentralized adaptive stabilization in the presence of unknown backlash-like hysteresis. Automatica 43(3), 426–440 (2007)

    Article  MathSciNet  Google Scholar 

  32. X.J. Wu, X.L. Wu, X.Y. Luo, X.P. Guan, Dynamic surface control for a class of state-constrained non-linear systems with uncertain time delays. IET Control Theory Appl. 6(12), 1948–1957 (2012)

    Article  MathSciNet  Google Scholar 

  33. X. Xia, T. Zhang, J. Zhu, Y. Yi, Adaptive output feedback dynamic surface control of stochastic nonlinear systems with state and input unmodeled dynamics. Int. J. Adapt. Control Signal Process. 30(6), 864–887 (2016)

    Article  MathSciNet  Google Scholar 

  34. B. Xu, Z. Shi, C. Yang, F. Sun, Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Cybern. 44(12), 2626–2634 (2014)

    Article  Google Scholar 

  35. B. Xu, F. Sun, H. Liu, J. Ren, Adaptive kriging controller design for hypersonic flight vehicle via back-stepping. IET Control Theory Appl. 6(4), 487–497 (2012)

    Article  MathSciNet  Google Scholar 

  36. M. Yan, J. Song, L. Zuo, P. Yang, Neural adaptive sliding-mode control of a vehicle platoon using output feedback. Energies 10(11), 1906–1923 (2017)

    Article  Google Scholar 

  37. C. Yang, Y. Jiang, Z. Li, W. He, C.Y. Su, Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans. Ind. Inf. 13(3), 1162–1171 (2017)

    Article  Google Scholar 

  38. S.J. Yoo, B.P. Jin, Y.H. Choi, Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays. IEEE Trans. Autom. Control 52(12), 2360–2365 (2007)

    Article  MathSciNet  Google Scholar 

  39. L. Zhang, H.K. Lam, Y. Sun, H. Liang, Fault detection for fuzzy semi-Markov jump systems based on interval type-2 fuzzy approach. IEEE Trans. Fuzzy Syst. PP(99), 1–13 (2019)

    Google Scholar 

  40. L. Zhang, H. Liang, Y. Sun, C.K. Ahn, Adaptive event-triggered fault detection scheme for semi-Markovian jump systems with output quantization. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–12 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61803040), China Postdoctoral Science Foundation (No. 2018M643556), the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2019GY-218, 2018JQ6098) and the Fundamental Research Funds for the Central University of China (Nos. 300102328403, 300102320720 and 300102320203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maode Yan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Yan, M. & Yang, P. Neural Adaptive Dynamic Surface Asymptotic Tracking Control for a Class of Uncertain Nonlinear System. Circuits Syst Signal Process 40, 1673–1698 (2021). https://doi.org/10.1007/s00034-020-01558-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01558-9

Keywords

Navigation