[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Some Studies on Multidimensional Fourier Theory for Hilbert Transform, Analytic Signal and AM–FM Representation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose the notion of Fourier frequency vector (FFV) which is inherently associated with the multidimensional (MD) Fourier representation (FR) of a signal. The proposed FFV provides physical meaning to the so-called negative frequencies in the MD-FR that in turn yields MD spatial and MD space-time series analysis. The one-dimensional Hilbert transform (1D-HT) and associated 1D analytic signal (1D-AS) of an 1D signal are well established; however, their true generalization to an MD signal, which possess all the properties of 1D case, are not available in the literature. To achieve this, we observe that in MD-FR the complex exponential representation of a sinusoidal function always yields two frequencies, namely negative frequency corresponding to positive frequency and vice versa. Thus, using the MD-FR, we propose MD-HT and associated MD analytic signal (AS) as a true generalization of the 1D-HT and 1D-AS, respectively, and obtain an explicit expression for the analytic image computation by 2D discrete Fourier transform (2D-DFT). We also extend the Fourier decomposition method for 2D signals that decomposes an image into a set of amplitude-modulated and frequency-modulated (AM–FM) image components. We finally propose a single-orthant Fourier transform (FT) of real MD signals which computes FT in the first orthant, and values in rest of the orthants are obtained by simple conjugation defined in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The FDM MATLAB code is publicly available for download at https://www.researchgate.net/publication/319877224_MATLABCodeOfFDMforImageDecomposition, and A MATLAB code for the proposed analytic image and 2D Hilbert transform computation by 2D-FFT is included in Appendix of the paper itself.

References

  1. S. Acton, P. Soliz, S. Russell, M. Pattichis, Content based image retrieval: the foundation for future case-based and evidence-based ophthalmology, in Proceedings of IEEE International Conference on Multimedia and Expo (2008), pp. 541–544

  2. S.T. Acton, D.P. Mukherjee, J.P. Havlicek, A.C. Bovik, Oriented texture completion by AM–FM reaction–diffusion. IEEE Trans. Image Process. 10(6), 885–896 (2001)

    Article  Google Scholar 

  3. M. Bahri, E.S.M. Hitzer, A. Hayashi, R. Ashino, An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 56, 2398–2410 (2008)

    Article  MathSciNet  Google Scholar 

  4. S. Bernstein, J.L. Bouchot, M. Reinhardt, B. Heise, Quaternion and Clifford Fourier Transforms and Wavelets Trends in Mathematics (Birkhäuser, Basel, 2013), pp. 221–246

    Book  Google Scholar 

  5. T. Bulow, G. Sommer, Multi-dimensional signal processing using an algebraically extended signal representation, in ed by. Sommer, G. AFPAC (Springer, Heidelberg, 1997). LNCS, 1315, pp. 148–163

  6. M. Felsberg, G. Sommer, The monogenic signal. IEEE Trans. Signal Process. 49(12), 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  7. L. Fortuna, P. Arena, D. Balya, A. Zarandy, Cellular neural networks: a paradigm for nonlinear spatio-temporal processing. IEEE Circuits Syst. Mag. 1(4), 6–21 (2001)

    Article  Google Scholar 

  8. D. Gabor, Theory of communication. J. IEE 93, 429–457 (1946)

    Google Scholar 

  9. G.H. Granlund, H. Knutsson, Signal Processing for Computer Vision (Kluwer, Dordrecht, 1995)

    Book  Google Scholar 

  10. A. Gupta, S.D. Joshi, P. Singh, On the approximate discrete KLT of fractional Brownian motion and applications. J. Frankl. Inst. 355(17), 8989–9016 (2018)

    Article  MathSciNet  Google Scholar 

  11. A. Gupta, P. Singh, M. Karlekar, A novel signal modeling approach for classification of seizure and seizure-free EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 26(5), 925–935 (2018)

    Article  Google Scholar 

  12. S.L. Hahn, Multidimensional complex signals with single-orthant spectra. Proc. IEEE 80(8), 1287–1300 (1992)

    Article  Google Scholar 

  13. J.J. Havlicek, J. Tang, S. Acton, R. Antonucci, F. Quandji, Modulation domain texture retrieval for CBIR in digital libraries, in 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA (2003)

  14. J. Havlicek, P. Tay, A. Bovik, AM–FM image models: fundamental techniques and emerging trends, in Handbook of Image and Video Processing, pp. 377–395. Elsevier Academic Press (2005)

  15. J.P. Havlicek, J.W. Havlicek, N.D. Mamuya, A.C. Bovik, Skewed 2D Hilbert transforms and AM–FM models, in ICIP 98. Proc. International Conference on Image Processing, October 4–7 (1998), 1, pp. 602–606

  16. N.E. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, H. Liu, The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. R. Soc. A 454, 903–995 (1988)

    Article  Google Scholar 

  17. K. Kohlmann, Corner detection in natural images based on the 2D Hilbert transform. Signal Proc. 48, 225–234 (1996)

    Article  Google Scholar 

  18. I. Kokkinos, G. Evangelopoulos, P. Maragos, Texture analysis and segmentation using modulation features, generative models, and weighted curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 142–157 (2009)

    Article  Google Scholar 

  19. K.I. Kou, M.S. Liu, J.P. Morais, C. Zou, Envelope detection using generalized analytic signal in 2D QLCT domains. Multidimens. Syst. Signal Process. 28(4), 1343–1366 (2017)

    Article  MathSciNet  Google Scholar 

  20. P. Kovesi, Image features from phase congruency. Videre J. Comput. Vis. Res. 1(3), 1–26 (1999)

    Google Scholar 

  21. J.V. Lorenzo-Ginori, An approach to the 2D Hilbert transform for image processing applications, in 4th International Conference, ICIAR (2007), Montreal, Canada, August 22–24, proceedings

  22. V. Murray, P. Rodriguez, M.S. Pattichis, Robust multiscale AM-FM demodulation of digital images. IEEE Int. Conf. Image Process. 1, 465–468 (2007)

    Google Scholar 

  23. V. Murray, M.S. Pattichis, E.S. Barriga, P. Soliz, Recent multiscale AM–FM methods in emerging applications in medical imaging. EURASIP J. Adv. Signal Process. 2012, 23 (2012). https://doi.org/10.1186/1687-6180-2012-23

    Article  Google Scholar 

  24. N. Mould, C. Nguyen, J. Havlicek, Infrared target tracking with AM–FM consistency checks, in Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation SSIAI 2008, pp. 5–8 (2008)

  25. M. Pattichis, G. Panayi, A. Bovik, H. Shun-Pin, Fingerprint classification using an AM–FM model. IEEE Trans. Image Process. 10(6), 951–954 (2001)

    Article  Google Scholar 

  26. M. Pattichis, C. Pattichis, M. Avraam, A. Bovik, K. Kyriakou, AM–FM texture segmentation in electron microscopic muscle imaging. IEEE Trans. Med. Imaging 19(12), 1253–1258 (2000)

    Article  Google Scholar 

  27. S.C. Pei, J.J. Ding, The generalized radial Hilbert transform and its applications to 2-D edge detection (any direction or specified directions), in ICASSP’03. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, April 6–10 (2003) 3, p. 357–360

  28. R. Prakash, R. Aravind, Modulation-domain particle filter for template tracking, in Proceedings of the 19th International Conference on Pattern Recognition ICPR 2008, pp. 1–4 (2008)

  29. R.S. Prakash, R. Aravind, Invariance properties of AM–FM image features with application to template tracking, in Proceedings of the Sixth Indian Conference on Computer Vision, Graphics and Image Processing ICVGIP’ 08, pp. 614–620 (2008)

  30. P. Singh, Studies on Generalized Fourier Representations and Phase Transforms, arXiv:1808.06550 [eess.SP] (2018)

  31. P. Singh, S.D. Joshi, R.K. Patney, K. Saha, The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A 473(2199) (2017)

  32. P. Singh, R.K. Patney, S.D. Joshi, K. Saha, Some studies on nonpolynomial interpolation and error analysis. Appl. Math. Comput. 244, 809–821 (2014)

    MathSciNet  MATH  Google Scholar 

  33. P. Singh, R.K. Patney, S.D. Joshi, K. Saha, The Hilbert spectrum and the energy preserving empirical mode decomposition, arXiv:1504.04104v1 [cs.IT] (2015)

  34. P. Singh, S.D. Joshi, R.K. Patney, K. Saha, Fourier-based feature extraction for classification of EEG signals using EEG rhythms. Circuits Syst. Signal Process. 35(10), 3700–3715 (2016)

    Article  MathSciNet  Google Scholar 

  35. P. Singh, Novel Fourier quadrature transforms and analytic signal representations for nonlinear and non-stationary time-series analysis. R Soc Open Sci 5(11), 1–26 (2018). https://doi.org/10.1098/rsos.181131

    Article  Google Scholar 

  36. P. Singh, Some studies on a generalized Fourier expansion for nonlinear and nonstationary time series analysis, Ph.D. dissertation, Department of Electrical Engineering, IIT Delhi (2016)

  37. R.A. Sivley, J.P. Havlicek, Perfect reconstruction AM–FM image models, in IEEE International Conference on Image Processing, pp. 2125–2128 (2006)

  38. P. Tay, AM–FM image analysis using the Hilbert–Huang transform, in Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation SSIAI 2008, p. 13–16 (2008)

Download references

Acknowledgements

Authors would like to thank the editors and anonymous reviewers for their constructive and thorough comments and suggestions which improved the presentation of manuscript.

Funding

There is no funding to support this research.

Author information

Authors and Affiliations

Authors

Contributions

P. Singh conceived and designed the study, carried out the simulation work, participated in data analysis, and drafted the manuscript; S. D. Joshi discussed and checked the mathematical analyses, coordinated the study and helped in drafting the manuscript. All authors commented and gave final approval for publication.

Corresponding author

Correspondence to Pushpendra Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Permission to Carry out Fieldwork

No permissions were required prior to conducting this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

1  An Analytic Image Computation Using the 2D-DFT

In this appendix, we derive analytic image representation by 2D-DFT as follows. Let g[mn] be a real-valued function, then the 2D-DFT of g[mn] is defined as

$$\begin{aligned} G[k,l]=\frac{1}{MN}\sum _{m=0}^{M-1} \sum _{n=0}^{N-1} g[m,n] e^{-j(\frac{km}{M}+\frac{ln}{N})} \end{aligned}$$
(40)

and 2D-IDFT is defined as

$$\begin{aligned} g[m,n]=\sum _{k=0}^{M-1} \sum _{l=0}^{N-1} G[k,l] e^{j(\frac{km}{M}+\frac{ln}{N})}. \end{aligned}$$
(41)

In (40), for odd numbers (\(M=N\)), there is only one real term G[0, 0] and \((MN-1)/2\) terms are complex conjugate of the rest \((MN-1)/2\) terms; and for even numbers (\(M=N\)), there are only four real terms G[0, 0], G[0, N / 2], G[M / 2, 0], G[M / 2, N / 2] and \((MN-4)/2\) terms are complex conjugate of the rest \((MN-4)/2\) terms. From the above discussions and using the conjugate symmetry of 2D-DFT, we obtain 2D-AS for odd numbers (\(M=N\)) as

$$\begin{aligned} z_{14}[m,n]= & {} 2\sum _{k=0}^{(M-1)/2} \sum _{l=0}^{{(N-1)}/{2}} G[k,l] e^{j\left( \frac{km}{M}+\frac{ln}{N}\right) } \nonumber \\&+ 2\sum _{k=(M+1)/2}^{(M-1)} \sum _{l=1}^{{(N-1)}/{2}} G[k,l] e^{j(\frac{km}{M}+\frac{ln}{N})}-G(0,0) \end{aligned}$$
(42)

and for even numbers (\(M=N\)) as

$$\begin{aligned} z_{14}[m,n]= & {} 2\sum _{k=0}^{M/2} \sum _{l=0}^{{N}/{2}} G[k,l] e^{j\left( \frac{km}{M}+\frac{ln}{N}\right) }+2\sum _{k=M/2+1}^{M-1} \sum _{l=1}^{{N}/{2}-1} G[k,l] e^{j\left( \frac{km}{M}+\frac{ln}{N}\right) }\nonumber \\&-G[0,0] -G[0,N/2]-G[M/2,0]-G[M/2,N/2], \end{aligned}$$
(43)

where real part of AS is original signal (i.e., \(g[m,n]=Re\{z_{14}[m,n]\}\)) and imaginary part of AS is the HT of original signal (i.e., \(\hat{g}[m,n]=Im\{z_{14}[m,n]\}\)). This 2D-AS has been obtained by considering the first and fourth quadrants of 2D DFT. These 2D-AS (analytic image) computation and 2D-HT can be easily implemented with 2D-FFT algorithms, e.g., A MATLAB implementation is presented in Algorithm 1.

figure a
figure b

2  MD-FS, MD-HT and MD-AS Representation

The 2D-FS discussion presented in Sect. 2 can be easily extended for MD-FS as follows

$$\begin{aligned} g(x_1,\ldots ,x_M)&=\sum _{k_M=-\infty }^{\infty } \ldots \sum _{k_{3}=-\infty }^{\infty } \sum _{k_{2}=0}^{\infty } \sum _{k_{1}=0}^{\infty } \big [a_{k_1,\ldots ,k_M} \cos (k_1\omega _1x_1+\ldots +k_M\omega _Mx_M)\nonumber \\&\qquad +\,b_{k_1,\ldots ,k_M} \sin (k_1\omega _1x_1+\ldots +k_M\omega _Mx_M)\big ]\nonumber \\&\qquad +\,\sum _{k_M=-\infty }^{\infty } \ldots \sum _{k_{3}=-\infty }^{\infty } \sum _{k_{2}=-\infty }^{-1} \sum _{k_{1}=1}^{\infty } \big [a_{k_1,\ldots ,k_M} \cos (k_1\omega _1x_1+\ldots +k_M\omega _Mx_M)\nonumber \\&\qquad +\,b_{k_1,\ldots ,k_M} \sin (k_1\omega _1x_1+\ldots +k_M\omega _Mx_M)\big ], \end{aligned}$$
(44)
$$\begin{aligned} g(x_1,\ldots ,x_M)= & {} \sum _{k_M=-\infty }^{\infty } \ldots \sum _{k_{2}=-\infty }^{\infty } \sum _{k_{1}=-\infty }^{\infty } c_{k_1,\ldots ,k_M} \exp [j(k_1\omega _1x_1+\ldots +k_M\omega _Mx_M)],\nonumber \\ c_{k_1,\ldots ,k_M}= & {} \frac{1}{T_1\ldots T_M} \int _{-\frac{T_M}{2}}^{\frac{T_M}{2}} \ldots \int _{-\frac{T_1}{2}}^{\frac{T_1}{2}} g(x_1,\ldots ,x_M)\nonumber \\&\quad \exp [-j(k_1\omega _1x_1+\ldots +k_M\omega _Mx_M)] \,\mathrm {d}x_1 \ldots \,\mathrm {d}x_M, \end{aligned}$$
(45)

where \(c_{k_1,\ldots ,k_M}=(a_{k_1,\ldots ,k_M}-jb_{k_1,\ldots ,k_M})/2\). We can easily obtain MD-HT by replacing \(\cos \) with \(\sin \) and \(\sin \) with \(-\cos \) in (44) and obtain AS such that real part of AS is original signal, AS has positive resultant frequency \(\omega =|\varvec{\omega }|=\sqrt{(k_1\omega _1)^2+\ldots +(k_M\omega _M)^2}\) and its FFV can be written as \(\varvec{\omega }=\begin{bmatrix}k_1\omega _1&\ldots&k_M\omega _M \end{bmatrix}^{T}\). The prowess and efficacy of the Fourier theory can be realized from the fact that the HT and analytic representation of a signal are, inherently, present in the Fourier representation.

Observation We can also use (44) for \((M-1)\)D space-time series \((x_1,\ldots ,x_{(M-1)},t)\) analysis, e.g., 2D wave equation, \(g(x,y,t)=\cos (k_1\omega _1 t-k_2\omega _2 x-k_3\omega _3 y)\), where \(k_1\omega _1=\frac{2\pi k_1}{T_1}=2\pi k_1f_1=2\pi f\), wave vector (or FFV) \(\varvec{\omega }=\begin{bmatrix}k_2\omega _2&k_3\omega _3 \end{bmatrix}^{T}\), wave number (or spatial frequency) \(|\varvec{\omega }|=\sqrt{(k_2\omega _2)^2+(k_3\omega _3)^2}=\frac{2\pi }{\lambda }\) and phase velocity \(v_p=\frac{k_1\omega _1}{|\varvec{\omega }|}=f\lambda \).

For non-periodic MD signal, \(g(x_1,\ldots ,x_M)\), the MD-FT and MD inverse FT (MD-IFT) are defined as

$$\begin{aligned} \begin{aligned}&C[f_1,\ldots ,f_M]\\&\quad =\int _{-\infty }^{\infty } \ldots \int _{-\infty }^{\infty } g(x_1,\ldots ,x_M) \exp [-j(\omega _1x_1+\ldots + \omega _Mx_M)] \,\mathrm {d}x_1 \ldots \,\mathrm {d}x_M,\\&g(x_1,\ldots ,x_M)\\&\quad =\int _{-\infty }^{\infty } \ldots \int _{-\infty }^{\infty } C[f_1,\ldots ,f_M] \exp [j(\omega _1x_1+\ldots +\omega _Mx_M)]\,\mathrm {d}f_1 \ldots \,\mathrm {d}f_M, \end{aligned} \end{aligned}$$
(46)

respectively. We define MD-AS, for real-valued signal \(g(x_1,\ldots ,x_M)\), as

$$\begin{aligned}&z(x_1,\ldots ,x_M)\nonumber \\&\quad =2\int _{-\infty }^{\infty } \ldots \int _{-\infty }^{\infty } \int _{0}^{\infty } C[f_1,\ldots ,f_M] \exp [j(\omega _1x_1+\ldots +\omega _Mx_M)]\,\mathrm {d}f_1 \ldots \,\mathrm {d}f_M, \end{aligned}$$
(47)

where its real part is original signal and imaginary part is HT of original signal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Joshi, S.D. Some Studies on Multidimensional Fourier Theory for Hilbert Transform, Analytic Signal and AM–FM Representation. Circuits Syst Signal Process 38, 5623–5650 (2019). https://doi.org/10.1007/s00034-019-01133-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01133-x

Keywords

Navigation