[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Adaptive Exponential State Estimation for Markovian Jumping Neural Networks with Multi-delays and Lévy Noises

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper discusses the adaptive exponential state estimation problem of neutral-type neural networks with multi-delays and Lévy noises. The M-matrix method being different from other methods, such as the LMIs method, has been applied to deal with the problem. According to the M-matrix method, some state estimation criteria for neural networks concerning neutral-type delays and no neutral-type delays are acquired to ensure the adaptive exponential estimation. Finally, a simulation example is offered to show the advantages of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  2. H. Chen, P. Shi, C.C. Lim, Exponential synchronization for Markovian stochastic coupled neural networks of neutral-type via adaptive feedback control. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1618–1632 (2017)

    Article  MathSciNet  Google Scholar 

  3. P. Cheng, Y. Qi, K. Xin, J. Chen, L. Xie, Energy-efficient data forwarding for state estimation in multi-hop wireless sensor networks. IEEE Trans. Autom. Control 61(5), 1322–1327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Gómez-Expósito, C. Gómez-Quiles, I. Džafić, State estimation in two time scales for smart distribution systems. IEEE Trans. Smart Grid 6(1), 421–430 (2015)

    Article  Google Scholar 

  5. L.V. Hien, D.T. Son, H. Trinh, On global dissipativity of nonautonomous neural networks with multiple proportional delays. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 225–231 (2018)

    Article  MathSciNet  Google Scholar 

  6. Y. Ji, F. Ding, Multiperiodicity and exponential attractivity of neural networks with mixed delays. Circuits Syst. Signal Process. 36(6), 2558–2573 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Jumarie, Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 32(5), 836–859 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Lee, Y. Kim, S. Chong, I. Rhee, Y. Yi, N.B. Shroff, On the critical delays of mobile networks under Lévy walks and Lévy flights. IEEE/ACM Trans. Netw. 21(5), 1621–1635 (2013)

    Article  Google Scholar 

  9. M. Liu, S. Zhang, Z. Fan, S. Zheng, W. Sheng, Exponential \(H_\infty \) synchronization and state estimation for chaotic systems via a unified model. IEEE Trans. Neural Netw. Learn. Syst. 24(7), 1114–1126 (2013)

    Article  Google Scholar 

  10. X. Liu, M. Dong, K. Ota, P. Hung, A. Liu, Service pricing decision in cyber-physical systems: insights from game theory. IEEE Trans. Serv. Comput. 9(2), 186–198 (2016)

    Article  Google Scholar 

  11. X. Liu, Z. Zeng, S. Wen, Implementation of memristive neural network with full-function pavlov associative memory. IEEE Trans. Circuits Syst. Regul. Pap. 63(9), 1454–1463 (2016)

    Article  MathSciNet  Google Scholar 

  12. R. Lu, P. Shi, H. Su, Z.G. Wu, J. Lu, Synchronization of general chaotic neural networks with nonuniform sampling and packet missing: a switched system approach. IEEE Trans. Neural Netw. Learn. Syst. 29(3), 523–533 (2016)

    Article  MathSciNet  Google Scholar 

  13. X. Mao, Stochastic Differential Equations and Applications (Elsevier, Amsterdam, 2007)

    MATH  Google Scholar 

  14. J.L. Mathieu, S. Koch, D.S. Callaway, State estimation and control of electric loads to manage real-time energy imbalance. IEEE Trans. Power Syst. 28(1), 430–440 (2013)

    Article  Google Scholar 

  15. E. Nadal, J.V. Aguado, E. Abisset-Chavanne, F. Chinesta, R. Keunings, E. Cueto, A physically-based fractional diffusion model for semi-dilute suspensions of rods in a Newtonian fluid. Appl. Math. Model. 51, 58–67 (2017)

    Article  MathSciNet  Google Scholar 

  16. P. Nowak, M. Pawłowski, Option pricing with application of Lévy processes and the minimal variance equivalent martingale measure under uncertainty. IEEE Trans. Fuzzy Syst. 25(2), 402–416 (2017)

    Article  Google Scholar 

  17. S. Peng, F. Li, L. Wu, C.C. Lim, Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2101–2114 (2017)

    MathSciNet  Google Scholar 

  18. Que, H., Fang, M., Wu, Z.G., Su, H., Huang, T., Zhang, D.: Exponential synchronization via aperiodic sampling of complex delayed networks. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2858247

  19. R. Sakthivel, P. Vadivel, K. Mathiyalagan, A. Arunkumar, M. Sivachitra, Design of state estimator for bidirectional associative memory neural networks with leakage delays. Inf. Sci. 296, 263–274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Shu, X.G. Liu, Y. Liu, J.H. Park, Improved results on guaranteed generalized \(H_2\) performance state estimation for delayed static neural networks. Circuits Syst. Signal Process. 36(8), 3114–3142 (2017)

    Article  MATH  Google Scholar 

  21. Tao, J., Wu, Z.G., Su, H., Wu, Y., Zhang, D.: Asynchronous and resilient filtering for Markovian jump neural networks subject to extended dissipativity. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2824853

  22. D. Tong, Q. Chen, Delay and its time-derivative-dependent model reduction for neutral-type control system. Circuits Syst. Signal Process. 36(6), 2542–2557 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Tong, P. Rao, Q. Chen, M.J. Ogorzalek, X. Li, Exponential synchronization and phase locking of a multilayer Kuramoto-oscillator system with a pacemaker. Neurocomputing 308, 129–137 (2018)

    Article  Google Scholar 

  24. D. Tong, W. Zhou, X. Zhou, J. Yang, L. Zhang, Y. Xu, Exponential synchronization for stochastic neural networks with multi-delayed and Markovian switching via adaptive feedback control. Commun. Nonlinear Sci. Numer. Simulat. 29(1–3), 359–371 (2015)

    Article  MathSciNet  Google Scholar 

  25. J.L. Wang, H.N. Wu, T. Huang, S.Y. Ren, J. Wu, Pinning control for synchronization of coupled reaction-diffusion neural networks with directed topologies. IEEE Trans. Syst. Man Cybern. Syst. 46(8), 1109–1120 (2016)

    Article  Google Scholar 

  26. L. Wang, Z. Wang, T. Huang, G. Wei, An event-triggered approach to state estimation for a class of complex networks with mixed time delays and nonlinearities. IEEE Trans. Cybern. 46(11), 2497–2508 (2016)

    Article  Google Scholar 

  27. Z. Wang, K.J. Burnham, Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation. IEEE Trans. Signal Process. 49(4), 794–804 (2001)

    Article  Google Scholar 

  28. C. Xu, P. Li, Global exponential convergence of fuzzy cellular neural networks with leakage delays, distributed delays and proportional delays. Circuits Syst. Signal Process. 37(1), 163–177 (2018)

    Article  MathSciNet  Google Scholar 

  29. J. Yang, W. Zhou, P. Shi, X. Yang, X. Zhou, H. Su, Synchronization of delayed neural networks with Lévy noise and Markovian switching via sampled data. Nonlinear Dyn. 81(3), 1179–1189 (2015)

    Article  MATH  Google Scholar 

  30. J. Yang, W. Zhou, X. Yang, X. Hu, L. Xie, \(p\)th moment asymptotic stability of stochastic delayed hybrid systems with Lévy noise. Int. J. Control 88(9), 1726–1734 (2015)

    Article  MATH  Google Scholar 

  31. X. Yang, J. Cao, J. Liang, Exponential synchronization of memristive neural networks with delays: interval matrix method. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1878–1888 (2017)

    Article  MathSciNet  Google Scholar 

  32. G. Zhang, Y. Song, T.Q. Zhang, Stochastic resonance in a single-well system with exponential potential driven by Lévy noise. Chin. J. Phys. 55(1), 85–95 (2017)

    Article  MathSciNet  Google Scholar 

  33. H. Zhang, Z. Wang, D. Liu, Global asymptotic stability of recurrent neural networks with multiple time-varying delays. IEEE Trans. Neural Netw. 19(5), 855–873 (2008)

    Article  Google Scholar 

  34. W. Zhang, Y. Tang, Y. Liu, J. Kurths, Event-triggering containment control for a class of multi-agent networks with fixed and switching topologies. IEEE Trans. Circuits Syst. Regul. Pap. 64(3), 619–629 (2017)

    Article  Google Scholar 

  35. W. Zhang, T. Yang, T. Huang, J. Kurths, Sampled-data consensus of linear multi-agent systems with packet losses. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2516–2527 (2016)

    Article  MathSciNet  Google Scholar 

  36. J. Zhou, X. Ding, L. Zhou, W. Zhou, J. Yang, D. Tong, Almost sure adaptive asymptotically synchronization for neutral-type multi-slave neural networks with Markovian jumping parameters and stochastic perturbation. Neurocomputing 214, 44–52 (2016)

    Article  Google Scholar 

  37. L. Zhou, Q. Zhu, Z. Wang, W. Zhou, H. Su, Adaptive exponential synchronization of multislave time-delayed recurrent neural networks with Lévy noise and regime switching. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2885–2898 (2017)

    Article  MathSciNet  Google Scholar 

  38. W. Zhou, Y. Gao, D. Tong, C. Ji, J. Fang, Adaptive exponential synchronization in \(p\)th moment of neutral-type neural networks with time delays and Markovian switching. Int. J. Control Autom. Syst. 11(4), 845–851 (2013)

    Article  Google Scholar 

  39. W. Zhou, D. Tong, Y. Gao, C. Ji, H. Su, Mode and delay-dependent adaptive exponential synchronization in \(p\)th moment for stochastic delayed neural networks with Markovian switching. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 662–668 (2012)

    Article  Google Scholar 

  40. W. Zhou, Q. Zhu, P. Shi, H. Su, J. Fang, L. Zhou, Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters. IEEE Trans. Cybern. 44(12), 2848–2860 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (61673257; 11501367; 61573095; 61673221); the Natural Science Foundation of Jiangsu Province (BK20181418); the fifteenth batch of Six Talent Peaks Project in Jiangsu Province (DZXX-019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongbing Tong, Wuneng Zhou or Yuhua Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Tong, D., Zhou, W. et al. Adaptive Exponential State Estimation for Markovian Jumping Neural Networks with Multi-delays and Lévy Noises. Circuits Syst Signal Process 38, 3321–3339 (2019). https://doi.org/10.1007/s00034-018-1004-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-1004-4

Keywords

Navigation