[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Practical Design of RC Approximants of Constant Phase Elements and Their Implementation in Fractional-Order PID Regulators Using CMOS Voltage Differencing Current Conveyors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper brings a practical and straightforward view on the design of circuit elements described by fractional-order dynamics known as the constant phase element (CPE) and their implementation in a novel structure of a PIαDβ (or PIλDμ in some literature) regulator based on fabricated CMOS voltage differencing current conveyors. Comparison of presented topology with known solutions indicates significant improvements regarding overall simplification, simpler electronic controllability of time constants, and having all passive elements in grounded form. Step-by-step design of the CPE as well as the PIαDβ regulator is supported by experiments with active devices fabricated using the C07 I2T100 0.7 μm CMOS process (ON Semiconductor). Laboratory tests in frequency and time domain confirm the correct operation of the designed application and the accuracy of the derived results in comparison with the theoretical expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. A. Adhikary, M. Khanra, S. Sen, K. Biswas, Realization of carbon nanotube based electrochemical fractor, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) (2015), pp. 2329–2332

  2. C.L. Alexander, B. Tribollet, M.E. Orazem, Contribution of surface distributions to constant-phase-element (CPE) Behavior: 1. Influence of roughness. Electrochim. Acta 173(10), 416–424 (2015)

    Article  Google Scholar 

  3. J. Ashraf, M.S. Alam, D. Rathee, A new proportional-integral-derivative (PID) controller realization by using current conveyors. Int. J. Electron. Eng. 3(2), 237–240 (2011)

    Google Scholar 

  4. M. Axtell, M.E. Bise, Fractional calculus application in control systems, in Proceedings of IEEE Conference on Aerospace and Electronics (1990), pp. 563–566

  5. S. Bennett, Development of the PID controller. IEEE Control Syst. 13(6), 58–62 (1993)

    Article  Google Scholar 

  6. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposal. Radioengineering 17(4), 15–32 (2008)

    Google Scholar 

  7. G.J. Brug, A.L.G. Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 176(1), 275–295 (1984)

    Article  Google Scholar 

  8. A. Charef, Analogue realisation of fractional-order integrator, differentiator and fractional PI/spl lambda/D/spl mu/controller. IEE Proc. Control Theory Appl. 153(6), 714–720 (2006)

    Article  Google Scholar 

  9. L.A. Christopher, B. Tribollet, M.E. Orazem, Contribution of surface distributions to constant-phase-element (CPE) behavior: 2. Capacitance. Electrochim. Acta 188(10), 566–573 (2016)

    Google Scholar 

  10. I. Dimeas, I. Petras, C. Psychalinos, New analog implementation technique for fractional-order controlled: a dc motor control. AEU—Int. J. Electron. Commun. 78(8), 192–200 (2017)

    Google Scholar 

  11. A.M. Elshurafa, M.N. Almadhoun, H.K. Salama, H.N. Alshareef, Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett. 102(23), 232901–232904 (2013)

    Article  Google Scholar 

  12. A. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)

    Article  Google Scholar 

  13. C. Erdal, H. Kuntman, S.A. Kafali, A current controlled conveyor based proportional-integral-derivative (PID) controller. J. Electr. Electron. Eng. 4(2), 1243–1248 (2004)

    Google Scholar 

  14. C. Erdal, A. Toker, C. Acar, Ota-C based proportional-integral-derivative (PID) controller and calculating optimum parameter tolerances. J. Appl. Sci. 9(2), 189–198 (2001)

    Google Scholar 

  15. T. Freeborn, B. Maundy, A. Elwakil, Approximated fractional order Chebyshev lowpass filters. Math. Probl. Eng. 2015 (2015). https://doi.org/10.1155/2015/832468

  16. T. Freeborn, Comparison of (1 + α) fractional-order transfer functions to approximate lowpass butterworth magnitude responses. Circuits Syst. Signal Process. 35(6), 1983–2002 (2016)

    Article  MathSciNet  Google Scholar 

  17. J. Jerabek, R. Sotner, N. Herencsar, K. Vrba, T. Dostal, Behavioral model for emulation of ZC-CG-VDCC. IEICE Electron. Express 13(18), 1–6 (2016)

    Article  Google Scholar 

  18. J.B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 51(8–9), 1473–1479 (2006)

    Article  Google Scholar 

  19. A.U. Keskina, Design of a PID controller circuit employing CDBAs. Int. J. Electr. Eng. Educ. 43(1), 48–56 (2001)

    Article  Google Scholar 

  20. J. Kittel, N. Celati, M. Keddam, H. Takenouti, New methods for the study of organic coatings by EIS: new insights into attached and free films. Prog. Org. Coat. 41(1–3), 93–98 (2001)

    Article  Google Scholar 

  21. M. Krishna, S. Das, K. Biswas, B. Goswami, Fabrication of a fractional order capacitor with desired specifications: a study on process identification and characterization. IEEE Trans. Electron Devices 58(11), 4067–4073 (2011)

    Article  Google Scholar 

  22. K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations (Willey, New York, 1993)

    MATH  Google Scholar 

  23. C. Muniz-Montero, L.V. Garcia-Jimenez, L.A. Sanchez-Gaspariano, C. Sanchez-Lopez, V.R. Gonzalez-Diaz, E. Tlelo-Cuautle, New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer order integrators. Nonlinear Dyn. 90(1), 241–256 (2017)

    Article  MathSciNet  Google Scholar 

  24. M.D. Ortigueira, Introduction to fractional signal processing. Part 1: Continuous-time systems. IEEE Proc. Vis. Image Signal Process. 147(1), 62–70 (2000)

    Article  Google Scholar 

  25. J. Petrzela, A note on fractional-order two-terminal devices in filtering applications, in Proceedings of 24th International Conference Radioelektronika (2014), pp. 1–4

  26. J. Petrzela, Arbitrary phase shifters with decreasing phase, in Proceedings of 38th International Conference on Telecommunications and Signal Processing (TSP) (2015), pp. 682–686

  27. J. Petrzela, Arbitrary phase shifters with increasing phase, In Proceedings of 38th International Conference on Telecommunications and Signal Processing (TSP) (2015), pp. 319–324

  28. J. Petrzela, Matrix pencil design approach towards fractional-order PI, PD and PID regulators, in Proceedings of 27th International Conference Radioelektronika (2017), pp. 1–4

  29. J. Petrzela, New network structures of reconfigurable fractional-order PID regulators with DVCC, in Proceedings of 2017 24th International Conference “Mixed Design of Integrated Circuits and Systems (MIXDES) (2017), pp. 527–531

  30. I. Podlubny, L. Dorcak, I. Kostial, On fractional derivatives, fractional-order dynamic systems and PIλDμ-controllers, in Proceedings of the 36th IEEE Conference on Decision and Control (1997), pp. 4985–4990

  31. I. Podlubny, B. Vinagre, P. O’leary, L. Dorcak, Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1–4), 281–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Podlubny, Fractional-Order Systems and Fractional-Order Controllers, UEF-03-94, Inst. Exp. Phys, Slovak Acad. Sci., Kosice, 1994. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.6602&rep=rep1&type=pdf. Accessed 26 Sept 2018

  33. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  34. A.G. Radwan, A.M. Soliman, A.S. Elwakil, First-order filters generalized to the fractional domain. J. Circuits Syst. Comput. 17(1), 55–66 (2008)

    Article  Google Scholar 

  35. V. Silaruam, A. Lorsawatsiri, C. Wongtaychatham, Novel resistorless mixed-mode PID controller with improved low-frequency performance. Radioengineering 22(3), 932–940 (2013)

    Google Scholar 

  36. R. Sotner, J. Jerabek, N. Herencsar, R. Prokop, K. Vrba, T. Dostal, Resistor-less first-order filter design with electronical reconfiguration of its transfer function, in Proceedings of 24th Int. Conference Radioelektronika (2014), pp. 1–4

  37. R. Sotner, J. Jerabek, J. Petrzela, O. Domansky, G. Tsirimokou, C. Psychalinos, Synthesis and design of constant phase elements based on the multiplication of electronically controllable bilinear immittances in practice. AEU—Int. J. Electron. Commun. 78(8), 98–113 (2017)

    Google Scholar 

  38. R. Sotner, J. Jerabek, R. Prokop, V. Kledrowetz, J. Polak, L. Fujcik, T. Dostal, Practically implemented electronically controlled CMOS voltage differencing current conveyor, in Proceedings of 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS) (2016), pp. 667–670

  39. R. Sotner, J. Jerabek, R. Prokop, V. Kledrowetz, Simple CMOS voltage differencing current conveyor-based electronically tuneable quadrature oscillator. Electron. Lett. 52(12), 1016–1018 (2016)

    Article  Google Scholar 

  40. A. Sylvain, M. Marco, M.E. Orazem, N. Pebere, B. Tribollet, V. Vivier, Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings. Electrochim. Acta 87(1), 693–700 (2013)

    Google Scholar 

  41. G. Tsirimokou, C. Psychalinos, A.S. Elwakil, K.N. Salama, Experimental verification of on-chip CMOS fractional-order capacitor emulators. Electron. Lett. 52(15), 1298–1300 (2016)

    Article  Google Scholar 

  42. P. Ushakov, A. Shadrin, A. Kubanek, J. Koton, Passive fractional-order components based on resistive-capacitive circuits with distributed parameters, in Proceedings of 39th International Conference on Telecommunications and Signal Processing (TSP) (2016), pp. 638–462

  43. J. Valsa, P. Dvorak, M. Friedl, Network model of the CPE. Radioengineering 20(3), 619–626 (2011)

    Google Scholar 

  44. J. Valsa, J. Vlach, RC models of a constant phase element. Int. J. Circuit Theory Appl. 41(1), 59–67 (2013)

    Google Scholar 

Download references

Acknowledgements

Research described in this paper was financed by Czech Science Foundation under Grant No. 16-06175S and the National Sustainability Program under Grant LO1401. For the research, infrastructure of the SIX Research Center was used. This article is based upon work from COST Action CA15225, a network supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Domansky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domansky, O., Sotner, R., Langhammer, L. et al. Practical Design of RC Approximants of Constant Phase Elements and Their Implementation in Fractional-Order PID Regulators Using CMOS Voltage Differencing Current Conveyors. Circuits Syst Signal Process 38, 1520–1546 (2019). https://doi.org/10.1007/s00034-018-0944-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0944-z

Keywords

Navigation